REDACTED

Limited Review

of Java-Tron

August 26, 2024

Produced for

NP TRON

by

(S: CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG

17
18
19
25
36
40

https://chainsecurity.com

1 Executive Summary

Dear Tron-Team,

Thank you for trusting us to help you with this code review. Our executive summary provides an overview
of subjects covered in our review of Java-Tron according to Scope to support you in forming an opinion
on their security risks.

Tron uses Java-Tron as the node software to run the Tron network. Hence, Java-Tron is (among other
things) responsible for executing transactions, generating blocks, achieving consensus and operating the
peer-to-peer network.

Due to the complexity of Java-Tron and the limited allocated time, this review cannot uncover all the bugs
inside of it. Instead, the goal of this review was to uncover as many bugs as possible while focusing on
the following parts of the code:

* Tron Virtual Machine (TVM)
» Consensus
* Peer-to-Peer (P2P)

Some of the most significant findings are:
* PBFT Messages Create State Expansion
« Unpermissioned Censoring of Fork Blocks

* Resource Consumption by Blocks Not Signed by Witnesses

These three findings have all been addressed through code corrections. For some other issues, the risks
have been accepted based on the assumption of economically acting super representatives. Lastly,
some issues with non-critical severity have been redacted to prevent malicious actors from creating
disturbances.

It is important to note that such reviews are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

(EE=)-Severity Findings 0
(C)-Severity Findings 4
¥ Code Corrected 4
(Medium)-Severity Findings 8
: 4
: 1
: 3
(Low)-Severity Findings 9
: 5
: 4

Please note that upon request of the customer certain findings have been redacted from this
report.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Java-Tron repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

Java Tron
V | Date Commit Hash Note
1 December 11, 2023 440d062dc7d39eff532414cc3b887f61509efof5 v4.7.3
2 May 30, 2024 a8ad2a169e58946b5hb8debecf7b7ef5nh8db05aff v4.7.5
Protocol
V | Date Commit Hash Note
1 December 11, 2023 961d0632b67971762dc5a8eefab50ed08d5¢c8673 v4.7.3

The review is based on Oracle JDK 1.8.

Java-Tron has a very large codebase. In order to concentrate efforts, the focus of this review was on the
following three packages of the code:

* Tron Virtual Machine (TVM)
» Consensus
* Peer-to-Peer (P2P)

However, due to their individual complexity, these packages were not covered in their entirety.

2.1.1 Excluded from scope

Generally, any part of the codebase not mentioned above is out-of-scope. More explicitly, features like
shielded transactions, database performance and cryptographic implementations were out of scope.
Furthermore, additional components of the Java-Tron ecosystem were out of scope. Among others, such
projects include the modified solidity compiler and mechanisms for snapshot synchronization.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 5

https://github.com/tronprotocol/java-tron/tree/440d062dc7d39eff532414cc3b887f61509ef9f5
https://github.com/tronprotocol/java-tron/tree/a8ad2a169e58946b5b8de6ecf7b7ef5b8db05aff
https://github.com/tronprotocol/protocol/tree/961d0632b67971762dc5a8eefab50ed08d5c8673
https://chainsecurity.com

2.2.1 Tron Execution Layer

2.2.1.1 Transactions

The Tron execution layer processes transactions. There are multiple types of transactions in Tron, the
most common types being the contract creation and contract call transactions. Other transaction types
are Tron-specific and are used to interact with the chain, such as freezing TRX, voting for witnesses, or
interacting with TRC-10 tokens.

The entry point of the execution layer is the Manager . When a transaction needs to be processed, the
function processTr ansact i on() is called. There are multiple contexts where it can be called:

« Upon receiving a new block, all of the block's transactions are processed sequentially, updating the
state accordingly.

* When the client is a witness and it is their turn to produce a block, transactions are processed to
create the block. In that case, state changes are discarded after the block is produced and will be
reprocessed when the block is received upon broadcasting it.

« Transactions received from other nodes or by users via RPC calls are processed without applying
the corresponding state change immediately. If they were sent to be included in a block, they are
added to the pool of pending transactions.

Manager . processTransacti on() has multiple responsibilities. First, several checks are performed
on the transaction:

» The signature's referenced block number and hash are checked to ensure that the transaction was
meant to be submitted on the given chain and fork.

» The transaction is checked not to be expired.
* The size of the transaction is checked to be smaller than or equal to the maximum allowed size.

* The transaction is checked to ensure that it is not a duplicate. This is done by checking if the
transaction's ID (hash) is already in the state's transaction history.

Then, transaction-wide fees are consumed, including:
» The bandwidth of the transaction.
» The MultiSig fee, if the transaction is a multi-signature transaction.

* The Memo fee, if the transaction has a memo.

After that, the transaction is passed over Runti mel npl . execut e. This function is responsible for
finding the actuator that corresponds to the transaction type. Each transaction type is supported by the
client via an actuator. In the general case, there is exactly one actuator for a given transaction type. The
only exception is for smart contract transactions, where the VMAct uat or is responsible for both calls
and the creation of smart contracts, which in Tron are two different transaction types, as opposed to
Ethereum where the creation of smart contracts is done with a call with an empty t o field.

An actuator defines two main methods:

eval i dat e() : This method is called to perform several checks on the transaction, from ensuring
that the transaction's parameters are valid to checking if the sender has enough balance in case the
transaction is a transfer.

e execut e() : This method is called to execute the transaction. It is responsible for updating the state
of the chain with the effect of the transaction.

Hence, at this point, the Runti nel npl first calls the actuator's val i dat e() method and then its
execut e() method.

In the case of the VMAct uat or, the execut e() method creates a program given the bytecode of the
contract being called or the init-bytecode to execute in the case of contract creation and calls

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

VM pl ay() to run the TVM against the program. For other actuators, the VM is not involved, and the
actuator is responsible for updating the state of the chain directly.

Once the transaction has been executed, the Manager performs several post-execution actions such as
deleting the contracts that have suicided during the execution.

2.2.1.2 The Tron Virtual Machine (TVM)

2.2.1.2.1 The Repository

The Repository is the entry point to read and write the state of the chain from within the TVM. It abstracts
away database operations and cache management. Examples of states being often read or written are
accounts, chain parameters or smart contract codes. The Repository implements a commit/discard
mechanism to allow for discarding changes made in case of a reverting transaction, failed external call or
client exception such as a stack overflow. The function newReposi t or yChi | d can be called to get a
new context where changes can be committed or discarded independently of the parent context.
Similarly, the function commi t is used to commit the changes made in the given repository. If the
repository is a child, the changes are committed to the parent repository. If the repository is the root, the
changes are committed to the relevant stores directly. It should be noted that any state read and changes
should hence be made through the repository to ensure that the changes are correctly committed or
discarded.

2.2.1.2.2 The Program

A program can be seen as an object that can be executed by the TVM. It contains not only the bytecode
to be executed, but also a Reposi tory: the state to use for the execution, and some TVM-related
context such as the caller, the stack, the memory, the context address, the code address or the program
counter.

A new program is created in the following cases:

* When a smart contract call transaction is processed, the VMAct uat or creates a program from the
account and code of the called contract.

* When a contract creation transaction is processed, the VMAct uat or creates a program from the
newly created account and the init-bytecode supplied in the transaction.

* When the TVM executes a CREATE or CREATE2 opcode, a new program is created for the new
execution context used to execute the init-bytecode.

* When the TVM executes a call opcode (CALL, DELEGATECODE...), a new program is created for the
new execution context.

Two metrics are used to limit the execution of a program:

» The energy: Any given program is given an amount of energy to execute. The energy is consumed
by the TVM as the program is executed. Each opcode consumes a certain amount of energy. If the
energy is depleted before the program is executed fully, the execution is stopped with an
Qut Of Ener gyExcepti on.

» The time: A big difference with the EVM is that in Tron, transactions are given a CPU time limit to
execute. If the time limit is reached before the program is fully executed (or before the energy is
depleted), the execution is stopped with a Qut Of Ti neExcepti on.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.1.2.3 The Jump Table

The Jump Table maps opcodes to tuples of energy function, execution function, required stack
arguments and produced stack arguments. The energy function takes as input a program and returns the
amount of energy consumed by the opcode given the program's state. The execution function also takes
as input a program and updates the program state accordingly. The required and produced stack
arguments are used to check that the stack is in the correct state before and after the execution of the
opcode.

There are different Jump tables for different hardforks of the chain, as when new opcodes are added
modified, or removed, the jump table is updated accordingly. The class Oper ati onRegi stry keeps
track of the different jump tables as new Tron versions are released.

2.2.1.2.4 Execution

A program is executed by the TVM given a jump table via the function VM pl ay. The function iterates
over the program's bytecode and processes the opcodes one by one. For each opcode of the bytecode,
the function fetches the relevant tuple from the jump table. It is then ensured that there are enough stack
arguments to execute the opcode and that the execution of the opcode will not overflow the stack.
Afterward, the energy consumed by the opcode is computed and subtracted from the program's energy.
Shall the energy be depleted, the execution is stopped with an Qut Of Ener gyExcepti on. If the
execution time of the program exceeds the time limit, the execution is stopped with an
Qut O Ti mneExcept i on. Finally, the opcode is executed, its effects are applied to the program and the
produced stack arguments are pushed onto the stack.

Most opcodes are simple and only require a few lines of code to be executed. However, some opcodes
require more complex logic.

« calls, CREATE and CREATE2 opcodes are responsible for creating a new program to execute the
called contract/init bytecode and handling the return value of the program.

» Several opcodes specific to the TVM such as DELEGATERESOURCE, FREEZEBALANCEV2 or
VOTEW TNESS are handled in processors that are responsible for the specific logic of the opcode.
These processors are similar to the corresponding actuators that are used to process corresponding
instructions when given in the form of transactions. For example, the
FreezeBal anceV2Processor and the FreezeBal anceV2Act uat or have similar logic to
handle the freezing of TRX.

2.2.1.2.5 Differences with the EVM

The TVM is different from the EVM in multiple aspects, we give here a non-exhaustive list of differences:

* The TVM semantics do not match any Ethereum hardfork, rather several EIPs are implemented in
the TVM but not all of them.

« Several opcodes have different semantics, for example DI FFI CULTY and GASLI M T return zero in
the TVM.

» The energy has a fixed price in SUN where the gas price is variable in the EVM.

« Several gas prices are different than in the EVM. For example, there is no concept of the access lists
in the TVM.

« Because of the 0x41 prefix, the CREATE2 opcode computes the to-be-created contract address
differently than in the EVM.

« Several precompiles behave differently or are accessible using different addresses than in the EVM.

«The TVM adds TRC-10 related opcodes CALLTOKEN, TOKENBALANCE, CALLTOKENVALUE and
CALLTOKENI D, which are used to interact with TRC-10 tokens. A program hence, in addition to
having a cal | val ue, can have a cal |l tokenval ue and a cal | t okeni d. As opposed to
cal | val ue, cal | t okenval ue and cal | t okeni d of the given context are not forwarded to a
sub-context created using a DELEGATECALL.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

» The opcode | SCONTRACT is used to check if an address is a contract or an account.
« Batch validations for normal and multiple signatures.
« Anonymous contract and Librustzcash-related pre-compile contracts

* The CREATE opcode does not behave the same as in Ethereum as the transaction hash is used
together with the nonce of the contract to compute the new address. The nonce of contracts is
incremented by one after each call or contract creation as opposed to each contract creation for the
EVM. Additionally, the nonce of a contract is not persistent between transactions.

« Stake 1.0 related opcodes: FREEZE(0xd5) , UNFREEZE(0xd6) and FREEZEEXPI RETI ME(0xd7)
« Contract voting-related opcodes and pre-compiled contracts

« Stake 2.0 related Freeze / Unfreeze / Delegate / UnDelegate opcodes and pre-compiled contracts.
* If a contract tries to send TRX to itself, this will fail.

* TVM has an explicit memory size limit, whereas EVM just has quadratic cost.

2.2.2 Tron Consensus

2.2.2.1 Resource model

Tron offers a transaction anti-spam system based on the acquisition and spending of two resources:
Energy and Bandwidth.

Every transaction requires the consumption of an amount of bandwidth equal to the size in bytes for the
serialized transaction. Every account has the right to 600 units of free bandwidth per day. A further
amount of daily bandwidth allowance can be acquired by staking TRX, the native token of the Tron
blockchain, or bandwidth for a transaction can be acquired by paying a transaction fee in TRX, which
gets burned. When paying the transaction fee, bandwidth is priced at 0.001 TRX per byte.

The other resource used when pricing transactions is Energy. Energy can be seen as an equivalent to
gas in Ethereum. Energy is spent in transactions of type Tri gger Smart Cont r act (contract calls) and
Creat eSmart Cont r act (smart contract creations where the constructor code is also executed). Energy
can be acquired by staking TRX, or by paying a transaction fee for Energy, at a price of 420 sun (10~ 6
TRX) per unit of energy. As in the case of bandwidth, the fee is burned.

Finally, some transactions require the spending of a TRX fee when executed. These are
Account Per m ssi onUpdat eCont r act Asset | ssueContr act, Account Creat eContr act
ExchangeCr eat eCont r act Mar ket Cancel Or der Contr act, Mar ket Sel | Asset Contract,
Wt nessCreateContract.

Extra fees are also applied if the transaction has a multisignature (0.001 TRX), and if the transaction has
a memo, i.e. the dat a field of the transaction protobuf is not empty (0.01 TRX).

Staking allows the acquisition of self-renewing resources for daily usage. Users can stake TRX in
exchange of either bandwidth or energy. A daily amount of 43.2*10° bandwidth units (bytes) are
available to stakers, and 90* 10° energy per day. When a user stakes, one of these two resources is
acquired, so that it can be spent. The global daily amount is proportionally partitioned among the stakers.

Acquired resources can be spent, and the amount used becomes available again linearly of the course of
24 hours, i.e. after 12 hours, it has regenerated by 50%, after 24 by 100%.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2.2.2.2 Staking

Tron has two versions of staking. The first was applied through transaction type
FreezeBal anceContract, and is referred to as staking v1, it is now deprecated and new stakes
cannot be created. The new version is applied through transaction type Fr eezeBal anceV2Cont r act ,
or opcode FREEZEBALANCEV2 (Oxda) if the staker is a smart contract, and is referred to as staking v2.
The user specifies the amount to be frozen, and the type of resource to be acquired (bandwidth or
energy). Internal balances are kept in the account (f r ozenV2 field in the account protobuf), for the
TRX amount staked for bandwidth and energy. Staking operations increment the global values
TOTAL_ENERGY_WEI GHT, and TOTAL_NET_WEI GHT, so that the total available daily bandwidth and
energy can be attributed proportionally to users stakes.

Staking v1 required the user to lock the stake for 3 days, after which the user could withdraw the staked
TRX at any time. Stake v2 has no lock duration, however when unstaking the acquired resource in
unallocated from the user, the voting power is lost, and the user has to wait for an unfreeze delay of 2
weeks before reacquiring the TRX being unstaked.

2.2.2.3 Voting power

Staking for bandwidth or energy automatically entitles the staker to another kind of resource: voting
power. The voting power of an account is the sum of the frozen balances for energy and bandwidth, both
for vl and v2 staking.

2.2.2.4 Delegations

Resources (bandwidth and energy) can be delegated by stakers to other accounts, such that resource
marketplaces can be created. Two versions of resource delegations exist: v1, linked to staking v1, is
historical and deprecated, no new delegations can be created. However, some still exist. V2 delegations
are the ones in current use, linked to staking v2.

When delegating to an account, the delegator transfers part of their unused resources to the delegate
through a Del egat eResour ceContract type of transaction, or through the DELEGATERESOURCE
opcode (Oxde), if the delegator is a smart contract. The delegator can specify whether to lock the
delegated resource for a period of time, which means they can't be reacquired until the lock has expired.
When delegating resources, the voting power attached to them is maintained by the delegator.

2.2.2.5 Voting

The Tron consensus protocol is denominated Delegated Proof-of-Stake (DP0S). In Tron DPoS, 27
witnesses are elected every consensus cycle (6 hours) by stakers of TRX. The elected witnesses (Super
Representatives) take turns (one per block) in performing the essential blockchain activity of block
production. Stakers are incentivized to participate in the election of Super Representatives because block
rewards are distributed back to the voters. A staker can participate in voting with the transaction type
Vot eW t nessCont r act, or with opcode VOTEW TNESS (0xd8), if the voter is a smart contract. A voter
can distribute their vote towards up to 30 witness candidates. New votes from a voter overwrite their past
votes. Votes are counted at the end of the 6-hour consensus period called cycle. At the end of each
cycle, votes are counted and accumulated into the witness accounts. The top 27 witness candidates
become super representatives. The next 100 witness candidates are elected standby representatives but
these do not have specific tasks towards maintenance of consensus, however, they are allocated a share
of the block reward.

2.2.2.6 Proposals

Witnesses are special accounts that participate in the consensus protocol at the peer-to-peer level
however they also participate in the protocol by sending transactions to create a new proposal
(Pr oposal Cr eat eCont r act) and voting for proposals (Pr oposal Appr oveCont r act). Proposals can
modify the blockchain parameters defined in java class Pr oposal Ut i | . The parameters include fees,
global available energy and bandwidth, the acceptance by the blockchain of new transaction types and
mechanisms.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Once a proposal is created, it is visible to all blockchain participants. After 3 days, at the end of a cycle,
just before the maintenance period, if it has been approved by a super-majority of the current
representatives (18 out of 27), the proposal is approved. Otherwise, it is not approved.

2.2.2.7 Rewards

Every block produced generates rewards towards stakers and witnesses. The first 127 witnesses (the
standby witness set) share a common block reward of 160 TRX. These are distributed to the witnesses
proportionally to their shares of total votes. Every witness sets a brokerage ratio, which is the share of
their rewards that they get to keep. The rest goes toward their voters.

The distribution algorithm of the witness reward to the voters is similar to Synthetix rewards algorithm,
aka Masterchef. It guarantees an O(1) execution time when a voter withdraws rewards, regardless of the
time elapsed since the last withdrawal and the number of voters.

Each block also attributes 16 TRX to the witness who produces it, which likewise gets split between the
witness (brokerage ratio), and its voters.

2.2.2.8 Block Generation

Blocks are generated by full nodes who are active witnesses (Super Representatives). The Java class
DposTask runs on a separate thread that checks at every new slot time whether the full node should
generate a block. The 27 Super Representatives for a cycle take turns to propose blocks in a round-robin
way.

On block generation, queued transactions are packed into the new block. Transactions are processed by
executing their payload on the current state. Every transaction builds on the state of previous
transactions. The time to generate a block is capped by default to a quarter of the block period (quarter of
3 seconds) so that validating nodes will have time to process the new block before it is time for the
production of a subsequent block.

2.2.2.9 Fork choice

Tron DPoS consensus uses a fork choice rule of longest chain. If a fork happens, and a block is received
which has the same block number as a previously processed block, a fork is detected, and the new block
is saved in the Khaos database for block storage if a parent is found in the database. The new block is
not yet used. When a block whose block number is higher than the current head block, but whose parent
is not the current head, is received, it is checked that its parent resides in the Khaos database (it is
known to the full node, and so recursively for ancestors). In this case, the new chain is longer than the
currently used one, and a reorganization can happen. The chain is reverted, one block at a time, up to
the height where the fork happened. Then, the blocks from the new chain are one by one applied.

2.2.2.10 Finality

Blocks are considered final when 19 super representatives confirm them. When producing a new block, a
super representative implicitly gives confirmation for all ancestor blocks. Hence, finality is implied by the
block being used as ancestor in a chain where at least 18 other super representatives have contributed
subsequent blocks. A finalized block is called a "solidified" block in Tron jargon. The "solid" block of the
chain is the latest solidified block. Events are emitted when a block is solidified so that users can
subscribe to a solidified feed and receive definitive confirmation of on-chain events.

2.2.3 Tron P2P messaging

The Tron P2P layer is initialized by the Tr onNet Ser vi ce which is the central object that initializes all
other related objects such as services, checks and handlers. Note that it sets up the P2PSer vi ce, an
object from the Tron p2plib library that manages the underlying channels and connections and is
responsible for receiving and sending messages. Further, more services are started that manage
synchronization, advertising and more.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

The P2PSer vi ce offers the possibility to register handlers that are called upon for the reception of
messages of non-negative types. Namely, the handler registered corresponds to the
P2pEvent Handl er | npl , which, as a consequence of compatibility with the P2PSer vi ce, implements
the three hooks:

1. onConnect
2.onDi sconnect

3. onMessage

onMessage will be the hook called when messages are received and will essentially forward the
messages to more specialized message handlers suitable for the type of message received.

Note that several thread executions will run (typically each service will start a thread periodically) to
process data while the P2PSer vi ce will run one scheduler thread that will distribute workloads on
worker threads. Hence, the P2pEvent Handl er | npl 's hooks may run concurrently. However, per peer
(or channel) only one execution at a time may run due to the design of the p2plib.

2.2.3.1 Connections and Peer Management

2.2.3.1.1 Establishing Connections

As the name suggests, onConnect is triggered when a connection is established. Namely, that occurs
once the low-level handshake of the p2plib has been completed. As a consequence, a
Peer Connect i on, wrapping the channel and storing peer-related data, is constructed while the peer is
tracked as a peer. A P2P-level handshake is initiated through HandShakeSer vi ce. st art Handshake.
That ultimately sends a Hel | oMessage.

Note that typically, it is expected that a Hel | oMessage is received so that one can validate the
compatibility of the two nodes (e.g. P2P protocol version) and potentially start a synchronization. More
specifically, a synchronization process (with syncService.startSync) is initiated if the
Hel | oMessage's sender has a higher head block nhumber. If not, the peer is tagged to require a sync if
its head block number is lower than the one that the recipient has (see Synchronization)

2.2.3.1.2 Disconnecting

Note that nodes can disconnect for several reasons. Either node could disconnect. If a node wants to
disconnect, it calls Peer Connecti on. di sconnect for the particular peer due to reasons on the
protocol level (e.g. bad behaviour). That shares a Di sconnect Message with the peer and closes the
channel. Typically, nodes will disconnect on bad messages, timeouts or other errors during the
processing of a peer's messages.

If the peer wants to disconnect, the disconnect message will be received and the channel will be closed.
However, in case no disconnect message is received, the channel will eventually be closed due to a
close future on the underlying net t y channel.

Ultimately, once a channel has been marked as disconnected either the hook onDi sconnect in the
P2pEvent Handl er | npl will be invoked (due to the close future on the underlying net t y channel) or
the thread run by the Peer Manager periodically instantiated for checking for disconnects will properly
untrack the peer completely.

Note that additionally, there is Peer St at usCheck which hosts a periodically scheduled thread that
ensures that no timeouts occur for communication about blocks, inventory requests and synchronization
block requests (see Synchronization and Transactions and Blocks). Timed-out nodes are disconnected.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

2.2.3.1.3 Receiving Messages

This section elaborates on how incoming messages are handled. Namely, the p2plib will invoke the
onMessage hook of the event handler implementation. The message is processed by the corresponding
message handler’s processMessage function (except the Hel | oMessage which is processed by a
pr ocessHel | oMessage) function. Note that any exception raised will ultimately lead to a disconnection
with a ban time of typically 60 seconds (as defined in the p2plib). However, in case of bad transactions,
the ban time will be one hour. The sections below will put the message processing into the right context.

2.2.3.2 Synchronization

2.2.3.2.1 Initiating Synchronization
The synchronization process is started when
1. a Hel | oMessage is received and the peer claims to know more (see Establishing Connections)

2. or a block of which we are unaware of the parent block is received (see New Blocks for more detail
on receiving blocks)

Note that synchronization is initiated through SyncSer vi ce. st art Sync which essentially resets the
synchronization state and starts synchronizing the next batch of blocks through
SyncSer vi ce. syncNext that will generate a chain summary of relevant block IDs. These are then sent
as a Bl ockl nvent or y message of type SYNC (aka SyncBl ockChai nMessage message).

The receiving peer of such a message is handling the messages in
SyncBl ockChai nMsgHandl er . processMessage. Namely, it will find the last solid block that both
know in the main chain and provide a list with the shared known solid block plus up to 2000 block IDs (up
to the head) by sending a Chai nl nventory message (aka ChainlnventoryMessage) which also
includes the remaining number of unsent block IDs.

2.2.3.2.2 Asking For Blocks

As a result of receiving such a message, the Chai nl nvent or yMsgHandl er . processMessage will be
eventually invoked. It will ensure that the block IDs received are ordered and have at least one element
(would mean that the peers are fully synced) but at most 2001 block IDs (see above), however, requiring
that if there are unsent IDs that the 2001 blocks have been fully filled. Further, they must overlap with the
SyncBl ockChai nMessage sent before. All yet unknown blocks are then queued for fetching
(syncBl ockToFet ch). Note that the peer during this execution time is marked as unfetchable. In case
all block IDs have been shared, or if the configured block fetch limit has been reached, the generic fetch
flag for the synchronization service’s fetching thread is set to true. Alternatively, syncNext is repeated.

Hence, the SyncSer vi ce has a thread for fetching the blocks. Namely, if the fetch flag has been set to
true, then all idle and fetchable peers from which the node is syncing are asked for the blocks that they
claimed they know. However, note that for each block ID only one peer is asked, limiting the number of
asked for blocks to 100. Consequently, the threads send a Fet chl nvDat aMessage message of type
BLOCK to each of the peers.

2.2.3.2.3 Sending and Receiving Blocks For Synchronization

When receiving such a message a peer's Fet chl nvDat aMsgHandl er. processMessage will run
which will ensure each block asked for is in a reasonable range. Ultimately, the block will be delivered (as
long as it is available) and a Bl ockMessage is sent.

Consequently, the recipient of such a message wil handle such a message in
Bl ockMsgHandl er . pr ocessMessage (note that at this point we elaborate only on the synchronization
parts, see New Blocks for more). Only blocks that have been requested for synchronization will be
accepted satisfying other validity properties. Ultimately, the requested block for synchronization is turned
into a synchronized block to be processed. As such, the SyncSer vi ce's block processing flag is set to
true, allowing the next scheduled block processing thread to run (a second type of thread owned by that

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

service). Note that again, the synchronization will syncNext (ask for more fetchable items) or continue
fetching more blocks.

2.2.3.2.4 Handling Synchronized Blocks

The aforementioned block processing thread in SyncSer vi ce will be scheduled periodically and only
perform the tasks if and only if the flag has been set (note it resets it immediately). The thread will iterate
over all blocks queued for processing. Note that blocks with numbers lower or equal to the node’s solid
block, or blocks from disconnected nodes (e.g. due to an error) will be discarded. The withess signature
is validated in the Tr onNet Del egat e. val i dat eSi gnat ur e function and the block is processed
through the Tr onNet Del egat e. processBl ock function that essentially pushes the block to the
manager through Manager . pushBl ock. Note that in case of errors, the node will disconnect from its
peer.

2.2.3.2.5 Peers To Sync From

Note that additionally there is Ef f ect i veCheckSer vi ce which runs a thread that performs actions if all
peers are syncing from the node. Namely, it chooses from the connectable nodes table offered by the
p2plib a suitable node to connect to, to ensure that there is at least one peer from which it could sync if
needed.

2.2.3.3 Transactions and Blocks

The publishing of transactions works by first advertising the hashes of transactions and blocks to peers
who in turn respond by asking for a subset of the hashes advertised. Then, the advertiser shares the
data. Below are more details.

2.2.3.3.1 New Transactions

Nodes can receive new transactions through the services they offer to users. For example, the
Ful | Node runs the RpcApi Servi ce which is invoked by the auto-generated VWl | et G pc upon
reception of transactions and forwards the protobuf Tr ansacti on message to the Wal | et . Similarly,
other user-facing services will direct transactions to the Wal | et . br oadcast Tr ansact i on which will
forward the transaction to:

1. the database manager Manager . pushTr ansact i on that validates the signature, processes the
transaction and pushes the transaction to the pending transactions (used in block production for
example)

2. AdvServi ce. fast Broadcast Transacti on to send an | nventoryMessage of type TRX
containing the transaction to each connected non-syncing peer.

Note that transactions may also be received from other peers due to the advertising protocol (see
Advertising). Namely, the Transacti onMsgHandl er. processMessage will accept asked-for
transactions and queue them for multi-threaded processing. Note that smart contract interactions
(creation and calls) are treated differently. Namely, they are queued for later processing by a periodically
scheduled thread that will submit them to the queue mentioned before. Further, note that smart contract
transactions may be ignored in case the queue has a size of 50.000. Thus, these transactions are
considered to be a lower priority to the system. Similar to the user-facing publishing of transactions, the
Transact i onMsgHandl er asks the Tr onNet Del egat e to push the transaction to the database with
Manager . pushTransact i on. However, note that the transaction is not immediately broadcasted but
gueued for later broadcasting with AdvSer vi ce. br oadcast .

2.2.3.3.2 New Blocks

Note that a node may eventually produce a block. When such a block is produced, the block is queued
for advertising similarly to a transaction in AdvSer vi ce. br oadcast . However, the transactions in the
block are subsequently not advertised individually but rather as part of the block.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Additionally, other nodes will eventually communicate their blocks through the advertisement protocol
(see Advertising).

Further, note that the block immediately triggers the processing of the queue. Similar to blocks received
for synchronization, the requested blocks will be handled in Bl ockMsgHandl er . pr ocessMessage.
Equivalently, a maximum block size is enforced along with proper timing. Similarly, the signature of the
block is checked and the block is queued for broadcasting and processed (recall
Tr onNet Del egat e. processBl ock in Sending and Receiving Blocks For Synchronization). Note that
the queue is then immediately worked on (the queue is shared with the transactions and hence,
transactions will be worked on too).

Note that startSync may be started for the peer sending if the parent is unknown (see
Synchronization).

2.2.3.3.3 Advertising

As seen in New Transactions, an InventoryMessage notifies peers about our new inventory. Transactions
and blocks received on the P2P layer are also published in that fashion. More precisely, a node collects a
batch of transactions and blocks to spread and advertise them to peers through | nvent or yMessage
(one for transactions and one for blocks).

Eventually, a node will receive such | nventoryMessage messages and handle them in the
I nvent or yMessageHandl er . processMessage. Blocks will always be queued for fetching while
transactions could be dropped if there are more than 50.000 pending ones. Similar to sending
advertisements, the response is not immediately sent for transactions but a separate periodically
scheduled thread will send out Fet chl nvDat aMessage messages. However, if a block inventory is
received, sending out will be immediately started (again the same queue is worked on for both
transactions and blocks, however, separate messages are sent).

Ultimately, as in the synchronization, Fetchl nvDat aMsgHandl er. processMessage will be
responsible for receiving requests for publishing the inventory. Transactions will be collected and
aggregated into one Transacti onsMessage while blocks will be sent out individually as
Bl ockMessage. Note that per hash only one peer is queried.

Note that additionally there is Fet chBl ockServi ce which is a service that runs a periodically
scheduled thread that tries to fetch the next block again if it has not been delivered fast enough.

2.2.3.3.4 Further Services
Note that the P2P layer consists of a few other services and functionalities.

1. KeepAl i veSer vi ce: Replies to Pi ng messages with Pong messages. However, the client never
sends a Pi ng.

2. NodePer si st Ser vi ce: A service that runs a thread that periodically stores the table of nodes to
storage.

3. Statistics: Statistics for messages, peers and node statistics

4. Rel aySer vi ce: Essentially a service for witnesses that periodically tries to connect to relay
nodes. Further, this includes special logic for relay nodes broadcasting (immediate broadcast) for
blocks when they are received.

5. PBFT messaging: However, as of the trust model, it is expected to be not activated.

2.2.4 Assumptions

We make the following assumptions about the system:

» The number of 27 Super Representatives will not be changed. Theoretically, this number could be
adjusted through a proposal.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

» There is a parameter vm naxTi meRat i o, which is 5 by default. Each node can set its value for
vm maxTi meRat i o. If there exists any transaction where the ratio between the slowest execution
time on a witness and the fastest transaction time on a witness is bigger than vm maxTi neRati o
then consensus can fail. Hence, we assume that no such transactions exist.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings E
(C)-Severity Findings 0
(Medium)-Severity Findings 3

» Denial of Service of Contract Creation
» Extra Block Can Be Proposed During Maintenance Period
» Timeout Checks Performed Synchronously

(Low)-Severity Findings 4
» Ambiguous Ordering When Counting Votes of Witnesses
« Events From Failed Reorganisation Not Removed
« Known Inventory Will Be Fetched
« intValue and longValue Do Not Behave as Documented

5.1 Denial of Service of Contract Creation

(D (Wiedium) (Version 1) (ETETED)

When a contract is created by an externally owned account via the contract creation transaction, it is
checked that there is no existing account at the address of the to-be-deployed contract. This check is
performed by the function cr eat e of the VMAct uat or . If the check fails, an exception is thrown.

CS-JTRON-009

However, it is also possible to activate an account by sending some TRX or TRC-10 to it for example. A
malicious actor could monitor the mempool for contract creation transactions and then front-run such
transactions with a transfer to the address of the to-be-deployed contract. This would cause the check to
fail and the contract creation to be denied.

Note that this attack is only possible if the contract creation transaction is sent by an externally owned
account. If the contract is created by another contract with CREATE or CREATEZ2, the check is different
and allows for the creation of a contract at an existing account as long as this account is not itself a
contract.

Risk accepted

Tron answered:

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

TRON' s packagi ng nmechani sm does not include a feature that allows transactions to be prioritized

by offering tips. Therefore, the success rate of such an attack by an attacker is relatively |ow,

and users can re-initiate transactions to deploy contracts after an attack. The inpact is mninmal,
so no nodifications are made for the time being.

5.2 Extra Block Can Be Proposed During
Maintenance Period

[Medium] [Version 1] Risk Accepted

The block validity check is not correct. As a result, the Super Representative in charge of performing the
maintenance period can propose extra blocks during the extra 6 seconds of maintenance.

CS-JTRON-010

A misbehaving Super Representative can produce an extra block on top of the maintenance block, during
the 6 maintenance seconds, which will be considered valid by the receiving nodes.
DposServi ce. val i dBl ock() is responsible for asserting that the received block comes from the
scheduled witness. It asserts that the absolute slot number of the received block is higher than the head
block:

| ong tineStanp bl ockCapsul e. get Ti neSt anp() ;
| ong bSl ot dposSl ot . get AbSI ot (ti neSt anp) ;
| ong hSl ot dposSl ot . get AbSI ot (consensusDel egat e. get Lat est Bl ockHeader Ti nest anp()) ;
if (bSlot hSlot) {
| ogger.warn("ValidBl ock failed: bSlot: {} <= hSlot: {}", bSlot, hSlot);
return fal se;

}

In the case of a block proposed during the extra 6 seconds of maintenance period, this assertion will
pass, as get AbSl ot () simply gets the number by dividing the time since genesis with the block
generation period of 3 seconds.

Next DposService.validBl ock() asserts that the scheduled block proposer of the current
timestamp is indeed the signer of the block:

ByteString wi tnessAddress bl ockCapsul e. get Wt nessAddr ess() ;

| ong sl ot dposSl ot . get Sl ot (ti meSt anp) ;
final ByteString schedul edWtness dposSl ot . get Schedul edW t ness(sl ot);
if (!schedul edWtness. equal s(w tnessAddress)) {
| ogger.warn("Val i dBl ock failed: sWtness: {}, bWtness: {}, bTimeStanp: {}, slot: {}"
Byt eArray.t oHexString(schedul edWtness.toByteArray()),
Byt eArray.t oHexString(w tnessAddress.toByteArray()), new DateTine(ti meStanp), slot);
return fal se;

}

Again the assert passes. This is because in dposSl ot . get Sl ot (mai nt enanceTi ne + 3000) the
first Sl ot Ti me will be in the future, because get Ti ne(1) accounts for maintenance periods.

public long getSlot(long tinme) {
long firstSlotTinme getTinme(1);
if (tine firstSlotTine) {
return O;

}
return (time firstSlotTine) BLOCK _PRODUCED | NTERVAL 1;

}

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

get Sl ot (mai nt enanceTi ne + 3000) returns 0. When querying
dposSl ot . get Schedul edW t ness(0) , the same witness as the previous block will be returned (if the
active witnesses have not changed in the maintenance period).

The more general underlying issue is that get Schedul edW t ness returns incorrect information. The
get Schedul edW t ness function of DposSI ot is supposed to determine the scheduled witness for a
particular slot that is passed to the function. However, this function does not check if the is a maintenance
period between the last slot and the provided slot. Hence, it does not take into account that certain slots
should be skipped. As a consequence, it can return incorrect results.

Risk accepted:
Client accepts the risk with the following statement:

At the end of each mmintenance period, at nbst one SR can neet the conditions for such a
mal i ci ous action, and the maxi mum nunber of bl ocks that can be maliciously produced is two. The
produced bl ocks will be executed according to the normal logic and will not affect the
subsequent bl ock production or the consistency of the network data. The inmpact is mnimal, so no
changes are nmade for the tine being.

We agree with Tron analysis of the issue. As a remark: In case there is a different attack that requires a
Super Representative to propose multiple blocks in a row (which is otherwise hard), this finding provides
a possibility to propose those consecutive blocks.

5.3 Timeout Checks Performed Synchronously

(Design LT D) Risk Accepted

The TVM uses different timeouts. The timeout for block processing and the timeout for executing
individual TVM transactions are checked synchronously. Hence, the actual execution times can
significantly exceed the respective timeouts. This can happen if a single transaction or a single opcode
take more time than expected. If an attacker manages to craft a transaction where the execution of a
single opcode takes 10 seconds, then the honest block producer will patiently wait for this opcode to
finish while generating the block. As a result, the block producer is unable to propose the block in a timely
manner. They will only realize this after the long opcode has been executed.

CS-JTRON-019

Risk accepted:
Tron accepts the risk with the following statement:

At present, there is no situation where the execution tine of a single instruction is too |long, causing
the SR to produce blocks that tine out and result in block loss. This issue is not actually present;
changing the tinmeout check to parallel execution would introduce unnecessary conplexity and affect

node performance, so no changes will be nade for the tine being.

5.4 Ambiguous Ordering When Counting Votes of
Withesses

(D) (Cow) (Version 1) (R

CS-JTRON-024

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

During the maintenance period, votes for the witnesses are aggregated. After performing this vote
aggregation and in order to extract the list of the 27 Super Representatives and 127 Standby Witnesses,
the ordering is done according to number of votes first, and then by the Byt eStri ng. hashCode() .
hashCode() has 4 bytes of entropy, and is not designed to be cryptographically secure. Hence, a
witness could easily choose an address with a beneficial hashcode. Furthermore, a malicious witness
could mine an address that has the same hashcode as another witness. Then, ordering could therefore
be ambiguous.

Risk accepted:
Tron states:

The sorting rules are publicly transparent, and a stable sorting algorithm TinSort, is used. Wen the

input source is stable and consistent, the output is also stable and consistent. The input source is

based on the witness vote counts and the hash val ues of the addresses, and the order is stable and consistent.
Based on this analysis, there is currently no unstable situation.

We remark that the order of the input of the sorting algorithm relies on the iteration order over the
database values. For the supported databases, LevelDB and RocksDB, the values are iterated in
lexicographical order of key, however, if another database engine were to be used, special care should
be taken to ensure that database entries are iterated in the same order.

5.5 Events From Failed Reorganisation Not
Removed

[Correctness JETIWEETIR] Risk Accepted

In Manager . swi t chFor k() , before the blocks are being reverted, their "events" are removed:

CS-JTRON-025

reO gContract Trigger();
reOrgLogsFilter();
eraseBl ock();

However, if a reorganisation fails because a block in the new chain does not validate, then the new chain
is reverted, but its events are not removed:

whil e (! getDynani cPropertiesStore()
. get Lat est Bl ockHeader Hash()
. equal s(bi naryTree. get Val ue() . peekLast (). get Parent Hash())) {
eraseBl ock();

}

In this case, reOQrgContract Tri gger () and reOrgLogsFi | t er () are not called.

Risk accepted:
Tron states in response:

Event service devel opers should select the ultimately valid events based on Bl ockNurmber and
Bl ockld, as well as the principle of the |longest chain. This issue does not prevent event
servi ce devel opers fromcorrectly processing events. No action will be taken at this tine,
and the docunentation will be updated in the future.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

5.6 Known Inventory Will Be Fetched
D) (Low) (Version 1) (ETEETED)

Advertisements of blocks and transactions are fetched even if they are known.

CS-JTRON-028

Consider the following example:
1. Alice sends an inventory message for an old block to Bob.

2. Bob processes the message and queues it for fetching. Since it is a block inventory, Bob
immediately tries to fetch it.

3. Alice delivers the block.

4. Bob will not do much as the received block will be below his head block number.

The reason for sending the message in step 2. is that the node checks only against the caches.
Ultimately, unnecessary traffic is created.

Risk accepted:

Tron acknowledged the issue and accepted the risk. The following response was provided:

At present, duplicate checks have already been nade for the |atest xx bl ocks and transactions.
Attackers can only construct historical transactions and blocks for attacks. If it is a

hi storical block or transaction, the attacked node can sinply process and discard it upon
recei pt, without actually executing and consum ng CPU resources. At the sane tine, the attack

will equally consunme the attacker's bandwi dth, so the overall inpact is minimal. If existence
checks are added at this time, the opponent can construct sone non-existent keys, which would
further affect system performance. In summary, no changes will be made for the tine being.

5.7 1 ntVal ue and | ongVal ue Do Not Behave as
Documented

[Correctness JEMINEETIR] Risk Accepted

In Dat awbrd, the functions intValue and |ongValue are documented as throwing an
Aritmeti cException if the values are too large to fit in the requested type. However, the
implementation does not throw an exception, but instead returns the value modulo the maximum value of
the requested type.

CS-JTRON-022

Because of this behavior, in the functions freezeExpireTi ne, parseRessourceCode and
convert Resour ceToStri ng of Program if a number large enough is given as r esour ceType, it
might be considered valid if, when truncated, it results in a valid resource type. The resource type
obtained when truncating the number will then be used in those cases.

Note that if the functions were to throw when a given value is too large, the functions i nt Val ueSaf e
and | ongVal ueSaf e would also throw since they respectively call i nt Val ue and | ongVal ue before
making the overflow check.

Risk Accepted

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

Tron answered:

The error is only in the comments; the usage does not actually rely on the

"TArithneti cException®® being thrown as described in the conments. "~ FreezeExpireTime

and par seRessourceCode” " are only used after the Stake 1.0 proposal is activated, but

the Stake 1.0 proposal on the mainnet has been deprecated, so the issue described in the
report will not occur; the " “convertResourceToString = nmethod is used only for |ogging,

and its actual parameter usage is "~ resourceType.sVal ue(). byteVal ueExact()" ", which wll
throw an exception when the paraneter is |arge.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 4

» PBFT Messages Create State Expansion

« Resource Consumption by Blocks Not Signed by Witnesses
+ Unbounded Memory Expansion in VOTEWITNESS Opcode
» Unpermissioned Censoring of Fork Blocks

(Medium)-Severity Findings g
» Accounts Created With Suicide Are Not Charged
» Block Interval Not Enforced
» Forceful Disconnect via Relay
» Incorrect Address Comparison When Suiciding
» witnessStandbyCache Is Not Invalidated After Chain Reorganization

(Low)-Severity Findings 5
« Improper Cache Invalidation
 No Removal of Transactions to Spread if in Block
+ Race Condition on Sync Block To Fetch
« Race-condition on Fetch Block
» Synchronization Issue During Block Generation

Informational Findings 1

« Redundant Map Clearing

6.1 PBFT Messages Create State Expansion
(Security JIHigh [(ZZEZZEY] Code Corrected)

While PBFT is expected to not be enabled, messages will nevertheless be accepted since an
al | owPbf t check is not present.

If a Pbf t Commi t Message is received, the Pbf t Dat aSyncHandl er will handle the message. Note that
this will simply put the message into pbft Commi t MessageCache. As a consequence, the size of the
mapping will increase. The only place that touches the mapping otherwise, namely to remove items, is
function processPBFTCommitData in the same class which is invoked during
SyncSer vi ce. processSyncBl ock. However, it returns early when al | owPBFT is f al se. Ultimately,
the pbf t Conmi t MessageCache will only grow. While normal nodes will not send such messages due to

CS-JTRON-004

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

al | owPBFT checks, malicious nodes may spam the memory of the honest nodes. Given the
arbitrary-sized nature of the message, this may happen rather quickly.

In summary, an unprivileged peer can fill up the memory of any other peer. Over time this will lead to an
Qut O Menor yEr r or in the attacked node and can therefore crash the node.

Similarly, the Pbf t MsgHand| er will accept PBFT messages, store information in memory, perform the
requested operations and potentially forward PBFT messages to other peers. Hence, this could be an
even more effective Denial-of-Service attack vector as the attacker does not need to be directly
connected to the victim.

Code corrected:

The code has been corrected. More specifically, it is now enforced that the handlers mentioned above
only process anything if PBFT is activated (which, as mentioned above, is not expected).

6.2 Resource Consumption by Blocks Not Sighed
by Withesses

(Securiy | High {CZEEBY Code Corrected

When receiving a block, it is also processed if it is not signed by a witness. This can lead to significant
resource consumption in two ways:

CS-JTRON-007

1. When receiving a block, it is checked in Bl ockMsgHandl er . pr ocessBIl ock() #141 whether the
signer belongs to the witness set. If it is not in the witness set, the block broadcasting is delayed to
after block processing int r onNet Del egat e. pr ocessBIl ock() . The reason for doing so is that a
valid block signer could not be in the witness set because of changes in the witness set happening
in an ongoing maintenance period.

If the block has an elapsed block number, it is considered a potential block belonging to a fork and
is simply stored in the Khaos database. The validity of its signer within the witness set is never
checked. The block is moreover broadcast to all the peers.

Hence, overall anyone can generate a block that consumes plenty of resources, namely memory,
storage, computing and network.

2. In the first phase of block processing, blocks are pushed (added to the database and considered for
processing) as long as they have a valid signature. In the first phase of validation, it is not enforced
that the signer is in the witness set (Tr onNet Del egat e. val i dBlI ock() checks this, but just
does not broadcast the block if the check fails). Whether the block is signed by the right witness is
checked after all transactions of the block have been applied.

When a longer chain is detected in Manager . pushBl ock(), the current chain is reverted up to
the level of the fork, and the blocks of the fork chain try to be applied (these blocks have not been
validated yet). If applying the blocks from the fork chain fails, the original chain will be kept, and the
fork chain discarded. This operation is however computationally very expensive because when
swi t chFor k() fails, all the original blocks have to be re-applied one by one. Note that this also
prevents the affected node from generating blocks in this time.

Since the blocks of the fork chain are not fully validated before swi t chFor k() happens, the
blocks do not need to be produced by an actual witness.

Code corrected:

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

The issue is addressed by filtering incoming blocks and dropping those that do not pass the signature
check or whose signer is not in the active witnesses set. If these two conditions fail, the blocks are not
processed.

The fix however potentially introduces race conditions where valid blocks are dropped because the signer
is not yet in the client's view of the active witnesses, since the previous blocks updating the witnesses list
might still be processing when the new one is received. Similarly, a block with a valid signature might be
dropped, if the permissions of the signer have been changed in a previous block that still has not been
processed.

Regarding this potential race condition, Tron comments:

The probability of this race occurring is quite low, and even if it occurs, the discarded
valid bl ocks can be retrieved again through bl ock synchroni zati on, wi thout affecting bl ock
consensus and nodes catching up bl ocks.

6.3 Unbounded Memory Expansion in
VOTEWITNESS Opcode
(Seccurity | High [WZETTBY Code Corrected

When computing the cost of operation VOTEW TNESS, the memory expansion cost is underestimated by
one. Passing a zero-length array at a high offset causes an unbounded memory expansion at a zero
cost.

VOTEW TNESS takes 4 arguments:

« the offset in memory of the witnesses array

CS-JTRON-005

« the size of the witnesses array
« the offset in memory of the vote amounts array

« the size of the vote amounts array

The memory expansion costs of accessing those arrays are computed in
Ener gyCost . get Vot eW t nessCost () :

Bi gl nt eger anount ArrayMenor yNeeded memNeeded(amount ArrayOf f set, anount ArraylLengt h);

Bi gl nt eger wi t nessArrayMenor yNeeded menmNeeded(wi t nessArrayOf f set, w tnessArraylLength);

where menmNeeded() returns O if amount ArraylLengt h or wi t nessArraylLengt h are zero
If we pass to VOTEW TNESS zero-length arrays, it will therefore cost only the base Energy fee of 30000.

However, when executing the opcode, the following memory load is performed to validate the length of
the array:

i f (rmenoryLoad(w tnessArrayOifset).intVal ueSafe() W t nessArraylLength
nmenor yLoad(amount ArrayOf f set) . i nt Val ueSaf e() amount ArrayLengt h) {

Even if the length we passed as argument to the opcode is zero, the array offset is still accessed,
because the operation assumes that the first memory word of the array is the size and wants to validate
it. This access is not priced in getVoteWtnessCost(). If witnessArrayOffset or
anount Arr ayLengt h are very high, this will trigger a huge memory expansion, which costs 0 energy to
the user.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

This issue may incur an attack with a transaction of more than 200ms execution time. Additionally, the
resulting garbage collection can consume a significant amount of time. While the issue could cause a
Denial-Of-Service, it is rather unlikely due to the precise timings required. Such a Denial-Of-Service could
occur as described below.

The witness which receives the transaction wants to broadcast it. As part of that broadcast, it calls
pushTransaction in Manager.java#831l. This takes some locks and then calls
processTransacti on. For this transaction, processTransacti on could take for example 2.5
seconds as it is being delayed by garbage collection. During these 2.5 seconds, the witness would like to
start generating a new block, but it can't because it is waiting for the lock.

Eventually, pr ocessTransact i on finishes and the transaction is added to pendi ngTr ansacti ons
and the block generation can obtain the locks. The relevant part of the block generation is in
Manager . gener at eBl ock. Here, the witness:

eTakes out the attack transaction out of the pendingTransactions using
pendi ngTransacti ons. pol | ();

* Then the witness does the timeout checki f (System currentTimeM I lis() > tineout) {
and immediately breaks from the loop.

Hence, the witness removed the transaction from pending but did not put it into any block. This process
continues with the next withess. The attack transaction is re-pushed but not included in a block. As
previously mentioned, this is very unlikely to work due to the precise timings needed for receiving,
processing and broadcasting the transaction as well as the required timing of the garbage collection.

Code corrected:

introduces parameter #81 ALLOW ENERGY_ADJUSTMENT, which updates the energy cost
calculation of VOTEW TNESS to use Energy. get VoteWtnessCost2() instead of the flawed
Ener gyCost . get Vot eW t nessCost (). get Vot eW t nessCost 2() correctly accounts for the length
of the witnesses and votes arrays, which include an initial word for the size of the arrays. Proposal #91
aims to enable the ALLOW ENERGY_ADJUSTMENT parameter.

6.4 Unpermissioned Censoring of Fork Blocks

(Sccurity | High {CZEETBY Code Corrected)

An attacker can censor fork blocks received by a node, by making the node "forget" those. As seen in the
issue Resource Consumption by Blocks not signed by witnesses the swi t chFor k() functionality can be
triggered with "fake" blocks by an unprivileged attacker. In that case, swi t chFor k() will fail, and the
original chain will be kept, after considerable computational effort. What also happens when
swi t chFor k() fails is that the complete fork chain is removed from the Khaos database of blocks. This
means that an attacker can censor a fork block received by a node by building a chain on top of it. To
achieve this the attacker builds on the fork block with fake blocks, that will trigger a swi t chFor k().
When the fork switching fails (because the blocks from the attacker are invalid), also the legitimate block
in the fork gets removed from the node database.

CS-JTRON-006

swi t chFor k() atline 1117-1121 in Manager.java:

if (exception nul 1) {

| ogger.warn("Swi tch back because exception thrown while switching forks.", exception);
first.forEach(khaosBl ock khaosDb. r enoveBl k(khaosBl ock. get Bl k(). get Bl ockl d()));

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

Code corrected:

This issue is resolved by dropping blocks from invalid producers before they are processed. The fix for
Resource Consumption by Blocks not signed by witnesses also addresses this.

6.5 Accounts Created With Suicide Are Not
Charged
7D (Viedium) (Version 1) (XIS

According to the specifications of Tron, creating an account on the Tron network requires paying a fee.
This provides important protections. However, if a contract executes the SUl Cl DE opcode and the
inheritor address does not refer to an existing account, then an account is created without the need to
pay a fee.

CS-JTRON-002

It could be possible for a malicious user to spam the suicide opcode in a transaction with different
addresses as inheritors to make the state grow a lot. A similar attack was performed against the
Ethereum network in 2016 where the attacker did the following:

Given a contract A with the following code:

PUSH1 0x00
CALLDATALQAD
SELFDESTRUCT

Then, deploy another contract B that, when called, calls A repeatedly, each time with a different calldata.
In that setting the attacker still needs to pay the energy cost of contract creation, but when performing
multiple SUI ClI DE operations, this account creation is still significantly cheaper than the regular account
creation. Furthermore, if the attacker has unused energy from their stake, then they can create accounts
at no additional costs.

Overall, the attacker would then just spam transactions to contract B to create a large amount of new
accounts. That would significantly increase the blockchain's state size.

Code corrected

introduces parameter #81 ALLOW ENERGY ADJUSTMENT. In the case, the corresponding
Committee proposal #91 about allowing the adjustment on Energy consumption of TVM instructions is
activated, the gas function used for the SUI Cl DE instruction is get Sui ci deCost 2, which charges
NEW ACCT_CALL extra energy in the case the inheritor address does not refer to an existing account.
This behavior is consistent with the rest of the TVM instructions, which charge extra energy when
creating a new account such as CALL.

Furthermore, regarding the state increase, Tron comments:

Due to the different storage mechani sns of TRON and Ethereum the increase in TRON s 'state
size' does not significantly degrade data performance. This attack nethod used on Ethereum does
not have a mmjor inpact on TRON.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 29

https://tronscan.org/#/proposal/91
https://chainsecurity.com

6.6 Block Interval Not Enforced
D (Medium) (Version 1) TR

The documentation says:

CS-JTRON-008

In the TRON network, the block interval is 3 seconds, that is, a block is generated every 3 seconds.

The val i dBI ock function of DposSer vi ce is in charge of checking the correct timestamp. However, it
uses get AbSl ot which rounds down the time difference. Hence, a block produced by a single, malicious
witness could lead to a block interval between one and five seconds. All other nodes would accept that
malicious block, due to the check discussed above. Hence, blocks are not guaranteed to appear every
three seconds if there is a malicious witness.

Specification changed:

Tron updates the specification of the system to include the reported behavior and states:

In the first instance where an SR does not engage in malicious behavior, the bl ock
production logic ensures that the block tine is a multiple of three. If an SR were
to maliciously alter the block header tine, they could only nodify it to be within

0 to 3 seconds of the current time. Additionally, if the block header time is not

a multiple of three, it will not affect the data consistency of the chain and wll
not interfere with the normal bl ock production by the next SR Furthernore, since
EVM chai ns |i ke Ethereum do not have a fixed block tinme, smart contract transactions
generally do not rely on a fixed periodic block tine. Considering the overall inpact
is mnimal, we will not nake changes at this tinme, but we will update the
docunentation in the future.

We remark that the bl ock. ti mest anp observed from the TVM can deviate up to 2 seconds from the
expected one. No smart contract application should rely on the timestamp spacing being constant.

6.7 Forceful Disconnect via Relay

() (Vdium) (Version 1) (XD

The Bl ockMsgHandl er . pr ocessMessage function performs check as follows:

CS-JTRON-003

if (!fastForward peer.isRel ayPeer()) {
check(peer, bl ockMessage);

}

Meaning, if a relay node has sent a block message or if the node itself is a relay node, the check will not
be performed.

The check may however trigger a disconnect. For example, as follows:

i f (bl ockCapsul e.getlnstance().getSerializedSize() maxBl ockSi ze) {
| ogger.error("Receive bad block {} frompeer {}, block size over limt",
nsg. get Bl ockl d(), peer.getlnet Socket Address());
t hrow new P2pExcepti on(TypeEnum BAD MESSAGE, "bl ock size over limt");

}

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

Now the following scenario could occur:
1. The attacker sends a block to the relay node and that block is too big.
2. The relay node does not check the block size.
3. The relay node eventually forwards it to its peers.
4. The relay peers will have the relay stored and also skip the check.
5. The relay peers will forward the block to their peers.
6. These peers will disconnect due to a too-big block message.
In conclusion, the attacker can send specially crafted blocks to relay nodes. The relay nodes and the

relay peers will accept them. However, once the relay peers forward them to their peers they get
disconnected from all their peers. Hence, a single block could cause a great wave of disconnects.

Code corrected:

The size check is now done for every peer. Similarly, is the gap check. Ultimately, check will only check
peer-specific constraints which do not apply to relay nodes.

6.8 Incorrect Address Comparison When
Suiciding
(Correctness IITHT)WEETTBY Code Corrected)

In the function sui ci de of org.tron. core.vm program Program the following comparison is
made:

CS-JTRON-012

Fast Byt eConpari sons. conpareTo(owner, 0, 20, obtainer, 0, 20) 0

It compares the first 20 bytes of the owner and obt ai ner arrays. However, both arrays are 21 bytes
long. This means that the last byte of the owner array is never compared. If a contract suicide with an
inheritor whose address's first 20 bytes match the first 20 bytes of the contract, the balance of the
contract will be sent to the black hole and lost. As a match of 20 bytes is required, the probability is
extremely small.

Code corrected

In the case the Committee proposal #91 about allowing the adjustment on Energy consumption of TVM
instructions is activated, the comparison is done on 21 bytes and not 20 bytes.

6.9 witnessStandbyCache Is Not Invalidated After
Chain Reorganization

[Medium] [Version 1] Code Corrected

The WtnessStore implements a custom cache logic, by instantiating the TronCache object
Wi t nessSt andbyCache. When get Wt nessSt andby() is queried, in the block reward distribution

CS-JTRON-023

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 31

https://tronscan.org/#/proposal/91
https://chainsecurity.com

logic of Mort gageSer vi ce, the cache is queried. However, the cache is not invalidated when a chain
reorganization happens and a database snapshot is retreated. This means that after a reorganization,
which involves a maintenance period that changed the standby witness list, the standby witness cache
will not be rolled back, and the block rewards will be distributed incorrectly. This can break the
consensus, as the nodes who reorganized the chain will attribute the rewards incorrectly, and the nodes
who did not reorganize will attribute them correctly. The difference in state will only be obvious when a
transaction involving amounts from incorrectly attributed rewards will be rejected by some nodes but not
others.

Code corrected:

The wi t nessSt andbyCache has been deprecated. Instead, the standby witnesses list is computed on
the fly at the end of the processing of every block, when the payouts to witnesses are distributed.

6.10 Improper Cache Invalidation

(D (Low) (Version 1) ISR

Caches in Peer Connecti on are cleaned up with cl eanUp as part of the onDi sconnect function.
Using cl eanUp means that only expired items are evicted. However, the i nval i dat eAl | function
could be used as it performs an actual cleanup. The function i nval i dat eAl | is also used in other
places e.g., TronCache.

CS-JTRON-026

Code corrected:

The function i nval i dat eAl | is now used.

6.11 No Removal of Transactions to Spread if in
Block
7D (Low) (Version 1) CXNSIZET)

When a Bl ockMessage is broadcasted in AdvSer vi ce. br oadcast , the function tries to remove the
transactions in the block from i nvToSpr ead as follows:

CS-JTRON-030

Sha256Hash tid transacti onCapsul e. get Transacti onl d();
i nvToSpr ead. renove(tid);

However, note that i nvToSpr ead has type | t emas key which will essentially have the same hashCode
function return value. However, due to the Concur r ent HashMap supporting multiple values per bucket
in the hash map, the removal is also based on equality. Namely, a key is only removed if
keyl nMap. equal s(t oRenpbveKey) .

However, | t emdefines the equal s function to be f al se if the runtime type of the compared to object is
not the same. Hence, the transaction is not removed from i nvToSpread, leading to publishing
transactions that had been published in a block.

However, that does not impact communication with other peers significantly.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

Code corrected:

The operation, which tried to remove the transaction from invToSpread was deleted. Please note that
Tron has clarified that not removing the transaction is acceptable behavior because it does not create a
significant network overhead.

6.12 Race Condition on Sync Block To Fetch
(Design [(EDERITB] Code Corrected)

When for example Peer CheckSt at us detects that a node has been disconnected, it will call
Peer Connecti on. onDi sconnect which will cl ear the Peer Connecti on. syncBl ockToFet ch
Deque. However, other processes may be running concurrently that could be affected, some of which
may result in unhandled exceptions. Namely, the thread in SyncSer vi ce running handl eSyncBl ock
will pop items from the Deque. Hence, if the executions overlap so that the Deque is cleared right before
the pop, the pop will raise NoSuchEl enment Excepti on due to it being empty. Ultimately, an
unexpected exception may occur.

CS-JTRON-033

Code corrected:

The code has been corrected. More specifically, pop is no longer used. Instead peek and r enove are
used. Thus, the program will ensure now that the ID is removed but will tolerate removals by other
threads.

6.13 Race-condition on Fetch Block

(D (Low) (Version 1) ST

In Fet chBl ockServi ce, the property f et chBl ockl nf o may be changed by several threads which
creates race-conditions on the variable due to a lack of synchronization.

CS-JTRON-034

For example, the function f et chBl ock is called by an | nvSender (ultimately by the fetching process in
AdvSer vi ce) to store the fetch block if needed and possible. Now, consider the following example.

1. Thread A handles a | nvent or yMessage from P1 for a block corresponding to head + 1.
. Thread B handles a | nvent or yMessage from P2 for a block corresponding to head + 1.
. Thread A processes the inventory queue first and sends the fetch request for the block.

. Thread B processes the inventory queue after and sends the fetch request for the block.

. Thread A's f et chBI ock sees the f et chBl ockl nf o to be nul | and sets it.

o O b~ WDN

. Thread A's modification to memory has not become visible yet to Thread B's. Thus, the latter set
f et chBl ock sees the f et chBl ockl nf o to be nul | and sets it.

Ultimately, the value has been overridden.
Similarly, the following may occur.

1. Assume a the block fetching process f et chBl ockPr ocess is running and wants to set the fetch
block info to null.

2. However, before the setting to null occurs, bl ockFet chSuccess sets it to null due to a received
message.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

3. The fetching thread consumer | nvToFet ch calls f et chBI ock with the current head + 1. It sees
the fetch block info being null and proceeds to set it to head + 1.

4. Now, however, the thread from 1. sets it back to null.

5. The thread from 3 now tries to log. However, if the memory has been pushed by the other thread,
f et chBl ockl nf 0. get Peer () inf et chBl ock will cause a null pointer exception.

While this scenario is rather unlikely due to the particular timing requirements and the requirements that
the threads will push their local memory nearly immediately to the shared memory, it nevertheless
illustrates the race-condition. Note that this particular scenario could throw an exception, leading to a loss
of knowledge about advertised blocks and transactions stored in AdvSer vi ce. i nvToFet ch.

Ultimately, there is a race-condition on f et chBIl ockl nf o.

Code corrected:

The code was updated to cache some of the data within the scope of the corresponding threads. With
that change, the race condition is technically still present, but it only has a minimal (GC-related) effect
now. The risk for a null pointer exception is gone.

6.14 Synchronization Issue During Block
Generation

(D (Cow) (Version 1) CXEEIEED)

When a node starts generating a new block, it executes the following code inside the function
DPosTask. pr oduceBl ock:

CS-JTRON-018

State state st at eManager. get St at e() ;
if (!State.OK equal s(state)) {
return state;

}

try {
synchroni zed (dposServi ce. get Bl ockHandl e(). get Lock()) {
Hence, it will first check the state and then start generating a block, if the state is OK. When a block
verification of an incoming block is currently in progress, this function will have to wait at the
synchr oni zed line for the block verification to finish. However, that block verification might change the

state to no longer be OK. But pr oduceBl ock does not check get St at e again. In this scenario, the
node would start generating the block even though the state is not CK.

Code corrected:

When generating a block, the state check is now performed after acquiring the synchronization lock. A
state check is also performed before acquiring the synchronization lock to avoid unnecessary lock
contention.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

6.15 Redundant Map Clearing
[Informational] [Version 1]

In the function Peer Connection.onD sconnect the clear function of the variable
syncBl ockl nPr ocess, which is a HashSet , is called twice back-to-back.

CS-JTRON-038

Code corrected:
The code has been adjusted to only cl ear once.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Incorrect Comment
(Informational] [Version 1](]

CS-JTRON-036

The variable Tr onNet Del egat e. hi t Down has a comment indicating that it is used for tests. However,
the exi t variable is used for tests. The comment appears to be incorrect.

Acknowledged:

Tron acknowledged the issue and stated:

The comment was i ndeed mi spl aced.

7.2 Redundant Channel Closing
[Informational] [Version 1][]

CS-JTRON-037

When the function Peer Connect i on. di sconnect is called, it automatically closes the channel from
the p2pl i b by calling Channel . cl ose. However, in Peer Manager . cl ose the peer is disconnected
but also the channel is closed which is redundant. Similarly, that is the case in
Rel ayServi ce. di sconnect .

Acknowledged:

Tron replied:

It is indeed closed twi ce. The second close will not incur any error and occupies very few
resources, so it has mnimal inpact.

7.3 Redundant and Inconsistent Check
(Informational] [Version 1](]

CS-JTRON-039

When the Bl ockMsgHandl er processes the block, it checks for its validity. However, when checking the
block timestamp there are two redundant checks.

The first check validates that the block time is not 3 seconds or more in the future in
Bl ockMsgHandl er . check:

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

| ong gap bl ockCapsul e. get Ti neSt anp() SystemcurrentTineM I is();
if (gap BLOCK_PRODUCED | NTERVAL) {
| ogger.error("Receive bad block {} frompeer {}, block tine error",
nsg. get Bl ockl d(), peer. getlnet Socket Address());
t hrow new P2pExcepti on(TypeEnum BAD MESSAGE, "block tine error");

}

However, the pr ocessBI ock function will validate the block with Tr onDel egat e. val i dBl ock which
will check the timestamp a second time. It will check that the block timestamp is not more than one
second in the future:

i f (bl ock.getTineStanp() tinme ti meout) {
t hrow new P2pExcepti on(TypeEnum BAD BLOCK,
"time:" tinme ",block tinme:" bl ock. get Ti neSt anp()) ;

}

where t i meout is set to 1000 milliseconds.

Acknowledged:
Tron acknowledged the issue and stated:

The block time check is perforned tw ce, which has mninmal inpact, and one of the checks can be renoved

7.4 TRC-10 Information Is Not Supported by

Delegatecall
[Informational] [Version 1] (]

CS-JTRON-016

When a contract does a DELEGATECALL, the current context's cal | val ue and sender are passed to
the subcontext. This is not the case for the cal | t okenval ue and cal | t okeni d.

Acknowledged
Tron answered:
TRC-10 is a feature on TRON that is not commonly used. The TRON Virtual Machine (TVM

provi des basic support for TRC-10, but the " “del egatecall "~ operation does not support
TRC- 10.

7.5 Undocumented and Unused Fields and

Properties
(Informational) (Version 1)()

CS-JTRON-040

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

The Tron protobuf protocol documentation is outdated as some fields remain undocumented. For
example, Hel | oMessage has a nodeType and a | owest Bl ockNumwhich are undocumented.

Similarly, block inventory messages can be of type ADVTI SE which is unused.

Additionally, many message types (see MessageTypes) are unused such as BLOCKS, BLOCKHEADERS,
| TEM_NOT_FOUND, FETCH_BLOCK_HEADERS, TRX_| NVENTORY and more.

Several parameters in CormonPar anet er are unused. For example, nodeChannel ReadTi meout ,
tcpNet t yWor kThr eadNum udpNet t yWor kThr eadNum or recei veTcpM nDat aLengt h. Also,
p2pDi sabl e is always false.

The setter for Peer Connect i on. i sRel ayPeer is unused.

Similarly, there are unused functions such as get HeadBl ockTi meSt anp or get Genesi sBl ock in
Tr onNet Del egat e.

Additionally, the timestamp in syncChai nRequest ed is unused.

Acknowledged:
Tron acknowledged the issue and stated:

TRON s protobuf document is outdated. Since sone of the fields are still not docunented,
many fields in variables are not being used.

7.6 Wrong Reason Code

(Informational) (Version 1)()

CS-JTRON-041

When processing a HelloMessage inside the function processHell oMessage of
HandshakeSer vi ce a check is made:

if (!'meg.valid()) {
peer . di sconnect (ReasonCode. UNEXPECTED | DENTI TY) ;

The reason code UNEXPECTED | DENTI TY is returned in the error case but does not really make sense
as nothing identity-related was checked in val i d.

Acknowledged:

Tron acknowledged the issue and stated:

The di sconnection process used an incorrect verification code; the correct verification code should
be used i nstead.

7.7 get Answer Message Is Not Set for Some

Messages
(Informational) (Version 1))

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

CS-JTRON-042

While the function get Answer Message of classes of type Message is not used, it can help understand
the message types. However, not every class has the expected return message returned by the method.
For example, Fet chl nvDat aMessage returns nul | but the expected answer message is either a list of
Bl ockMessage or Transact i onsMessage.

Code corrected:

Tron acknowledged the issue and stated:

Cet Answer Message is not being utilized, it will be renopved.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Capabilities of Powerful Attacker
(D) (Version 1)

Throughout our work, mostly a malicious witness was the strongest attacker we considered. However, an
attacker that has stronger network capabilities than the average node (e.g., an ISP) may attack the
network.

Consider the following examples:

1. If the attacker can repeat messages: The attacker could repeat hello messages to forcefully
disconnect two nodes due to two hello messages being delivered. The sender of the duplicated
hello would be banned for 1 hour.

2. If the attacker can interrupt messages: The attacker could censor the delivery of certain inventory
so that the delivery times out and the peers disconnect. The sender of the inventory would be
banned for 1 minute.

3. If the attacker can modify messages or forge them: The attacker could provide bad transactions to
provoke a disconnect. The seemingly malfunctioning sender would be banned for 1 hour.

Overall, an attacker with such strong network capabilities could relatively easily perform eclipse attacks
and other network-based attacks.

8.2 Parameter Range Dangerous for Consensus

(D (Version T

Node operators can choose the value of the BLOCK PRODUCE Tl MEQUT PERCENT parameter. This
parameter indicates which percentage of the half block time (so currently 1.5 seconds) can be spent for
transaction processing inside block generation. A node operator can set this to 100%, however, 100%
never really makes sense as we will argue below.

For this example, we assume that there are many pending transactions. If the
BLOCK PRODUCE TI MEQUT _PERCENT is set to 100%, the transaction processing for block generation
will take more than 1.5 seconds (because it will only be stopped after it crosses the timeout). The total
block generation time will be even larger as it also includes, computing the merkle tree and signing the
block. Then the block needs to be broadcast. Even in the optimal case, where the next active witness is a
direct peer of the current active witness, this broadcast step will take some time. Then the block
verification at the new witness starts. Part of this verification is again the transaction processing of 1.5
seconds, but additional steps such as signature verification are also necessary.

Hence, the two steps of transaction processing already require more than the block time. Additionally,
time is needed for signature generation, signature verification, merkle tree computation, merkle tree
verification, broadcast and many more steps. In conclusion, even in the ideal case, significantly more
than the block time is needed. Hence, the next active witness can only start generating its block with a
delay, as it has to wait for the block verification to finish.

The situation is even more severe when the two witnesses are not peers. Then the broadcast time is a lot
higher as the intermediate nodes perform checks before forwarding the block. In this scenario, it is
plausible that the next witness will not receive the block in time and hence will not build on top of it.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

8.3 Voting More Effectively Against Proposals by
Late Approval Retraction

(D) (Version 1)

Proposals are often accepted with about 18 to 22 votes in favor. Additional voters seem to encounter
voter fatigue or do not want to pay for voting. Hence, voters against a proposal might be able to vote
more effectively, by first voting in favor of a proposal, just to retract their vote in the last block of the cycle,
before proposal processing. Then, the proposal might not pass the necessary quorum.

@ Tron - Java-Tron - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Tron Execution Layer
	2.2.1.1 Transactions
	2.2.1.2 The Tron Virtual Machine (TVM)
	2.2.1.2.1 The Repository
	2.2.1.2.2 The Program
	2.2.1.2.3 The Jump Table
	2.2.1.2.4 Execution
	2.2.1.2.5 Differences with the EVM

	2.2.2 Tron Consensus
	2.2.2.1 Resource model
	2.2.2.2 Staking
	2.2.2.3 Voting power
	2.2.2.4 Delegations
	2.2.2.5 Voting
	2.2.2.6 Proposals
	2.2.2.7 Rewards
	2.2.2.8 Block Generation
	2.2.2.9 Fork choice
	2.2.2.10 Finality

	2.2.3 Tron P2P messaging
	2.2.3.1 Connections and Peer Management
	2.2.3.1.1 Establishing Connections
	2.2.3.1.2 Disconnecting
	2.2.3.1.3 Receiving Messages

	2.2.3.2 Synchronization
	2.2.3.2.1 Initiating Synchronization
	2.2.3.2.2 Asking For Blocks
	2.2.3.2.3 Sending and Receiving Blocks For Synchronization
	2.2.3.2.4 Handling Synchronized Blocks
	2.2.3.2.5 Peers To Sync From

	2.2.3.3 Transactions and Blocks
	2.2.3.3.1 New Transactions
	2.2.3.3.2 New Blocks
	2.2.3.3.3 Advertising
	2.2.3.3.4 Further Services

	2.2.4 Assumptions

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Denial of Service of Contract Creation
	5.2 Extra Block Can Be Proposed During Maintenance Period
	5.3 Timeout Checks Performed Synchronously
	5.4 Ambiguous Ordering When Counting Votes of Witnesses
	5.5 Events From Failed Reorganisation Not Removed
	5.6 Known Inventory Will Be Fetched
	5.7 intValue and longValue Do Not Behave as Documented

	6 Resolved Findings
	6.1 PBFT Messages Create State Expansion
	6.2 Resource Consumption by Blocks Not Signed by Witnesses
	6.3 Unbounded Memory Expansion in VOTEWITNESS Opcode
	6.4 Unpermissioned Censoring of Fork Blocks
	6.5 Accounts Created With Suicide Are Not Charged
	6.6 Block Interval Not Enforced
	6.7 Forceful Disconnect via Relay
	6.8 Incorrect Address Comparison When Suiciding
	6.9 witnessStandbyCache Is Not Invalidated After Chain Reorganization
	6.10 Improper Cache Invalidation
	6.11 No Removal of Transactions to Spread if in Block
	6.12 Race Condition on Sync Block To Fetch
	6.13 Race-condition on Fetch Block
	6.14 Synchronization Issue During Block Generation
	6.15 Redundant Map Clearing

	7 Informational
	7.1 Incorrect Comment
	7.2 Redundant Channel Closing
	7.3 Redundant and Inconsistent Check
	7.4 TRC-10 Information Is Not Supported by Delegatecall
	7.5 Undocumented and Unused Fields and Properties
	7.6 Wrong Reason Code
	7.7 getAnswerMessage Is Not Set for Some Messages

	8 Notes
	8.1 Capabilities of Powerful Attacker
	8.2 Parameter Range Dangerous for Consensus
	8.3 Voting More Effectively Against Proposals by Late Approval Retraction

