
TRON: Advanced Decentralized Blockchain Platform

Whitepaper Version: 2.1
TRON Protocol Version: 4.8.0

Contents

1 Introduction 3
1.1 Vision . 3
1.2 Background . 3
1.3 History . 3

1.3.1 The Genesis of a Decentralized Internet (2017) 3
1.3.2 Developing the Core (2018) . 3
1.3.3 Expanding Functionality and Adoption (2019 - 2021) 4
1.3.4 Sustained Growth and Ecosystem Dominance (2022 - Present) 4
1.3.5 Looking Ahead . 4

1.4 Terminology . 4

2 Architecture 5
2.1 Core Layer . 5
2.2 Storage Layer . 5

2.2.1 Blockchain Storage . 5
2.2.2 State Storage . 5

2.3 Application Layer . 7
2.4 Protocol . 7

2.4.1 Protocol Buffers . 7
2.4.2 HTTP . 7

2.5 TRON Virtual Machine (TVM) . 7

3 Consensus 8
3.1 Delegated Proof of Stake (DPoS) . 8

4 Account 10
4.1 Types . 10
4.2 Creation . 10
4.3 Structure . 10

5 Block 12
5.1 Block Header . 12

5.1.1 Raw Data . 12

1

5.1.2 Witness Signature . 12
5.1.3 Block ID . 12

5.2 Transaction . 13
5.2.1 Signing . 13
5.2.2 Bandwidth Model . 13
5.2.3 Fee . 13
5.2.4 Transaction as Proof of Stake (TaPoS) . 14
5.2.5 Transaction Confirmation . 14
5.2.6 Structure . 14

6 TRON Virtual Machine (TVM) 16
6.1 Introduction . 16
6.2 Workflow . 16
6.3 Performance . 16

6.3.1 Lightweight Architecture . 16
6.3.2 Robust . 16
6.3.3 High Compatibility . 16
6.3.4 Low Cost . 16

7 Smart Contract 18
7.1 Introduction . 18
7.2 Energy Model . 18
7.3 Deployment . 18
7.4 Trigger Function . 19
7.5 TRON Solidity . 19

8 Token 20
8.1 TRC-10 Token . 20
8.2 TRC-20 Token . 20
8.3 Beyond . 20

9 Governance 21
9.1 Super Representative . 21

9.1.1 General . 21
9.1.2 Election . 21
9.1.3 Reward . 21

9.2 Committee . 22
9.2.1 General . 22
9.2.2 Dynamic Network Parameters . 22
9.2.3 Create Proposal . 22
9.2.4 Vote Proposal . 23
9.2.5 Cancel Proposal . 23

9.3 Structure . 23

10 DApp Development 24
10.1 APIs . 24
10.2 Networks . 24
10.3 Resources . 24

11 Conclusion 25

Appendix A: Terminology 26

Appendix B: Dynamic Network Parameters 29

2

1 Introduction

1.1 Vision

TRON is an ambitious project dedicated to the establishment of a truly decentralized Internet and
its infrastructure. The TRON Protocol, one of the largest blockchain-based operating systems in the
world, offers public blockchain support of high throughput, high scalability, and high availability for
all Decentralized Applications (DApps) in the TRON ecosystem. Since its inception, TRON has con-
sistently expanded its capabilities, achieving significant adoption in areas such as stablecoin transfers
and cultivating a thriving community, further solidifying its prominent position within the blockchain
industry.

1.2 Background

The introduction of Bitcoin in 2009 revolutionized society’s perception of the traditional financial sys-
tem in the wake of the Great Recession (2007-2008). As centralized hedge funds and banks collapsed
from speculation in opaque financial derivatives, blockchain technology provided a transparent univer-
sal ledger from which anybody could glean transaction information. Transactions were cryptograph-
ically secured using a Proof of Work (PoW) consensus mechanism, thus preventing double-spending
issues.

In late 2013, the Ethereum whitepaper proposed a network in which smart contracts and a Turing-
complete Ethereum Virtual Machine (EVM) would allow developers to interact with the network
through DApps. However, as transaction volumes in Bitcoin and Ethereum peaked in 2017, it was
apparent from the low transaction throughput times and high transaction fees that cryptocurrencies
like Bitcoin and Ethereum in their existing state were not scalable for widespread adoption. Thus,
TRON was founded and envisioned as an innovative solution to these pressing scalability challenges.

1.3 History

1.3.1 The Genesis of a Decentralized Internet (2017)

TRON’s journey began in July 2017 with its establishment in Singapore, driven by a core vision:
the creation of a truly decentralized internet. This ambitious undertaking was quickly supported by
a successful Initial Coin Offering (ICO) in August 2017, securing crucial development capital. An
early commitment to transparency and open collaboration was demonstrated with the launch of its
open-source protocol in December 2017, inviting community participation from its inception1.

1.3.2 Developing the Core (2018)

Rapid technological advancement took place in 2018. The launch of the Shasta Testnet in March
paved the way for the pivotal Mainnet Launch, Odyssey 2.0, in May, establishing TRON as a high-
performance, independent Layer-1 blockchain capable of supporting a new generation of DApps. Pri-
oritizing network efficiency and decentralized governance, TRON implemented the Delegated Proof-
of-Stake (DPoS) consensus mechanism and elected its Super Representatives (SR) in June 2018. This
foundational year also saw strategic expansion with the acquisition of BitTorrent in July, significantly
amplifying TRON’s reach and potential within decentralized content distribution. The latter half of
the year saw the launch of the Ethereum-compatible TRON Virtual Machine (TVM) in October, a
key catalyst for attracting developers and fostering ecosystem growth. Supporting this development,
the Odyssey-v3.2 upgrade in November introduced resource delegation, optimizing network utility.
By December 2018, TRON’s burgeoning ecosystem had attracted over 1 million user accounts. The
introduction of the TRC-10 and TRC-20 token standards throughout 2018 provided the fundamental
infrastructure for asset tokenization and DApp innovation on the platform.

1Whitepaper V1.0 is available at https://tron.network/static/doc/white paper v 1 0.pdf; whitepaper V2.0 is avail-
able at https://tron.network/static/doc/white paper v 2 0.pdf

3

https://tron.network/static/doc/white_paper_v_1_0.pdf
https://tron.network/static/doc/white_paper_v_2_0.pdf

1.3.3 Expanding Functionality and Adoption (2019 - 2021)

TRON continued its evolution with key protocol upgrades in 2019, including Odyssey-v3.5 in March,
enhancing account security and flexibility, and Odyssey-v3.6.5 in October, optimizing staking and
governance mechanisms. This period also marked the significant rise of TRON as a leading network
for stablecoin transfers, with the widespread adoption of TRC-20 USDT beginning in 2019, leveraging
its speed and low transaction fees. This utility became a major driver of user growth. By September
2020, the platform had onboarded over 10 million accounts. The increasing prominence of TRON in
the stablecoin ecosystem was further underscored by the rapid growth of TRC-20 USDT issuance,
surpassing 10 billion by early 2021 and reaching over 30 billion by May 2021.

1.3.4 Sustained Growth and Ecosystem Dominance (2022 - Present)

This period demonstrated continued robust growth in both user adoption and stablecoin dominance.
TRON’s user base experienced significant acceleration, scaling to over 100 million accounts by June
2022 and exceeding 300 million by April 2025. Concurrently, TRC-20 USDT issuance continued its
upward trajectory, reaching over 70 billion by April 2025, solidifying TRON’s position as a critical
infrastructure within the global stablecoin landscape. This expansion is complemented by TRON’s
ongoing commitment to enhancing core platform stability, scalability, performance, and calibrating
the economic model in response to market dynamics.

Significant protocol advancements during this period include a series of mandatory major upgrades.
The GreatVoyage-v4.7.0.1 (Aristotle) release introduced the Stake 2.0 mechanism and a dynamic En-
ergy model for the TVM, enhancing resource management and execution efficiency. The GreatVoyage-
v4.7.2 (Periander) release then upgraded TRON’s network module to Libp2p v1.2.0, improving peer-
to-peer communication and block synchronization. It also introduced critical updates to Stake 2.0
and the EIP-3855 PUSH0 Instruction in the TVM. The GreatVoyage-v4.8.0 (Kant) release further
enhanced the TRON Virtual Machine (TVM) by adapting to key improvements from Ethereum’s re-
cent upgrades, aiming to improve smart contract efficiency and reduce transaction costs, maintaining
TRON’s competitiveness as an EVM-compatible blockchain.

1.3.5 Looking Ahead

Building upon its established infrastructure, TRON remains committed to enhancing interoperabil-
ity, fostering broader adoption, and further solidifying its position as a leading blockchain with a
thriving ecosystem and unparalleled efficiency in stablecoin transfers within the evolving landscape of
decentralized technologies.

1.4 Terminology

For definitions of key terms and acronyms used throughout this whitepaper, refer to Appendix A:
Terminology.

4

Figure 1: TRON Development Timeline & Milestones (2017−Present)

2 Architecture

TRON adopts a three-layer architecture composed of a Core Layer, Storage Layer, and Application
Layer. The TRON protocol adheres to Google’s Protocol Buffers (Protobuf), which intrinsically sup-
ports multi-language extension.

2.1 Core Layer

The Core Layer is composed of several key modules responsible for functions including smart contracts,
account management, and consensus. TRON implements a stack-based virtual machine, the TRON
Virtual Machine (TVM), which uses an optimized instruction set. To better support DApp developers,
Solidity2 was chosen as the smart contract language, followed by future support of other advanced
languages. In addition, TRON’s consensus mechanism is based on Delegated Proof of Stake (DPoS),
incorporating many innovations to meet its unique requirements.

2.2 Storage Layer

TRON’s unique distributed storage protocol consists of Block Storage and State Storage. The notion
of a graph database was introduced into the design of the Storage Layer to better meet the need for
diversified data storage in the real world.

2.2.1 Blockchain Storage

TRON blockchain storage utilizes LevelDB, which is developed by Google and proven successful with
many companies and projects. It has high performance and supports arbitrary byte arrays as both
keys and values, operations on individual keys (get, put, delete), batch operations (put, delete), bi-
directional iterators, and simple compression using the fast Snappy algorithm.

2.2.2 State Storage

TRON has a KhaosDB in the full-node memory that can store all the newly forked chains generated
within a certain period of time. This enables SRs to switch swiftly from their own active chain into a
new main chain. It also protects the blockchain storage by making it more stable from being terminated
abnormally in an intermediate state.

2Solidity official documentation: https://solidity.readthedocs.io/

5

Figure 2: TRON 3-layer Architecture

6

2.3 Application Layer

Developers can create a diverse range of DApps and customized wallets on TRON. Since TRON enables
smart contracts to be deployed and executed, it supports a wide spectrum of potential use cases.

2.4 Protocol

TRON protocol adheres to Google Protocol Buffers3, which is a language-neutral, platform-neutral,
and extensible way of serializing structured data for use in communications protocols, data storage,
and more.

2.4.1 Protocol Buffers

Protocol Buffers (Protobuf) is a flexible, efficient, automated mechanism for serializing structured
data, similar to JSON or XML, but is significantly smaller, faster, and simpler.

Protobuf (.proto) definitions can be used to generate code for C++, Java, C#, Python, Ruby, Golang,
and Objective-C languages through the official code generators. Various third-party implementations
are also available for many other languages. Protobuf simplifies client development by unifying the API
definitions and also optimizing data transfers. Clients can use the API.proto from TRON’s protocol
repository and integrate through the automatically-generated code libraries.

As a comparison, Protocol Buffers is 3 to 10 times smaller and 20 to 100 times faster than XML, with
less ambiguous syntax. Protobuf generates data access classes that are easier to use programmatically.

2.4.2 HTTP

TRON Protocol provides a RESTful HTTP API alternative to the Protobuf API. They share the same
interface but the HTTP API can be readily used in JavaScript clients.

2.5 TRON Virtual Machine (TVM)

The TVM is a lightweight, Turing-complete virtual machine developed for TRON’s ecosystem. The
TVM connects seamlessly with the existing development ecosystem to provide millions of global devel-
opers with a custom-built blockchain system that is efficient, convenient, stable, secure, and scalable.

3Google Protocol Buffers official documentation: https://developers.google.com/protocolbuffers/

7

3 Consensus

3.1 Delegated Proof of Stake (DPoS)

The earliest consensus mechanism is the Proof of Work (PoW) consensus mechanism. This protocol is
currently implemented in Bitcoin4 and Ethereum5. In PoW systems, transactions broadcast through
the network are grouped into nascent blocks for miner confirmation. This confirmation process involves
hashing transactions using cryptographic hashing algorithms until a merkle root has been reached,
creating a merkle tree:

Figure 3: 8 TRX transactions are hashed into the merkle root. This merkle root is then included in the
block header, which is attached to the previously confirmed blocks to form a blockchain. This allows
for easy and transparent tracking of transactions, timestamps, and other related information.

Cryptographic hashing algorithms are useful in network attack prevention because they possess several
properties6:

• Input/Output length size - The algorithm can pass in an input of any length in size, and
outputs a fixed-length hash value.

• Efficiency - The algorithm is relatively easy and fast to compute.

• Preimage resistance - For a given output z, it is impossible to find any input x such that h(x)
= z. In other words, the hashing algorithm h(x) is a one-way function in which only the output

4Bitcoin whitepaper: https://bitcoin.org/bitcoin.pdf
5Ethereum whitepaper: https://github.com/ethereum/wiki/wiki/WhitePaper
6PAAR, C., PELZL, J., Understanding Cryptography: A Textbook for Students and Practitioners, 2010 ed. Springer-

Verlag Berlin Heidelberg, 2010.

8

can be found, given an input. The reverse is not possible.

• Collision resistance - It is computationally infeasible to find any pairs x1 ̸= x2 such that
h(x1) = h(x2). In other words, the probability of finding two different inputs hashing to the
same output is extremely low. This property also implies second preimage resistance.

• Second preimage resistance - Given x1, and thus h(x1), it is computationally infeasible to
find any x2 such that h(x1) = h(x2). While this property is similar to collision resistance, the
property differs in that it is saying an attacker with a given x1 will find it computationally
infeasible to find any x2 hashing to the same output.

• Deterministic - maps each input to one and only one output.

• Avalanche effect - a small change in the input results in an entirely different output.

These properties give the cryptocurrency network its intrinsic value by ensuring attacks do not compro-
mise the network. When miners confirm a block, they are rewarded with tokens as a built-in incentive
for network participation. However, as the global cryptocurrency market capitalization steadily in-
creased, the miners became centralized and focused their computing resources on hoarding tokens as
assets, rather than for network participation purposes. CPU miners gave way to GPUs, which in turn
gave way to powerful ASICs.

To solve the energy waste issue, the Proof of Stake (PoS) consensus mechanism was proposed by many
new networks. In PoS networks, token holders lock their token balances to become block validators.
The validators take turns proposing and voting on the next block. However, the problem with standard
PoS is that validator influence correlates directly to the amount of tokens locked up. This results in
parties hoarding large amounts of the network’s base currency wielding undue influence in the network
ecosystem.

The TRON consensus mechanism uses an innovative Delegated Proof of Stake system in which 27
SRs produce blocks for the network. Every 6 hours, TRX account holders who freeze their accounts
can vote for a selection of SR candidates, with the top 27 candidates deemed the SRs. Voters may
choose SRs based on criteria such as projects sponsored by SRs to increase TRX adoption, and rewards
distributed to voters. This allows for a more democratized and decentralized ecosystem. SRs’ accounts
are normal accounts, but their accumulation of votes allows them to produce blocks. With the low
throughput rates of Bitcoin and Ethereum due to their PoW consensus mechanism and scalability
issues, TRON’s DPoS system offers an innovative mechanism resulting in 2000 Transactions Per Second
(TPS) compared to Bitcoin’s 3 TPS and Ethereum’s 15 TPS.

The TRON protocol network generates one block every three seconds, with each block awarding 16
TRX to SRs. A total of 168,192,000 TRX will be awarded annually to the 27 SRs. Each time an SR
finishes block production, rewards are sent to a sub-account in the super-ledger. SRs can check, but
not directly make use of these TRX tokens. A withdrawal can be made by each SR once every 24
hours, transferring the rewards from the sub-account to the specified SR account.

The three types of nodes on the TRON network are Witness Node, Full Node, and Lite Full Node.
Witness nodes are set up by SRs and are mainly responsible for block production and proposal cre-
ation/voting. Full nodes provide APIs and broadcast transactions and blocks. Solidity nodes sync
blocks from other Full Nodes and also provide indexable APIs.

9

4 Account

4.1 Types

The TRON network features two primary types of accounts:

1. Externally Owned Accounts (EOAs): These accounts are controlled by a private key. They
are used to send TRX and tokens, vote for Super Representatives, and deploy smart contracts.
An EOA account can hold balances of TRX, TRC-10 tokens, and TRC-20/TRC-721 tokens (via
interaction with contract accounts). This is the most common type of account, used by all wallet
users.

2. Contract Accounts: These are smart contract accounts controlled by the logic of their code.
A contract account does not have a private key and is activated upon creation. Its functions can
be invoked by any EOA or other contract, as permitted by its code.

4.2 Creation

There are three ways to create a TRON account:

1. Create an account offline using the command-line wallet wallet-cli;

2. Create an account offline using an SDK, such as the Trident SDK;

3. Create a private key and its corresponding address via a wallet application.

Accounts can be activated in the following two ways:

1. Send any amount of TRX or TRC-10 tokens from an existing account to the new account;

2. Call Java-tron’s wallet/createaccount API to create a transaction from an existing account,
then sign the transaction and broadcast it to the TRON network.

An offline key pair consisting of an address (public key) and a private key, and not recorded by the
TRON network, can also be generated. The user address generation algorithm consists of generating
a key pair and then extracting the public key (64-byte byte array representing x, y coordinates). Hash
the public key using the SHA3-256 function (the SHA3 protocol adopted is KECCAK-256) and extract
the last 20 bytes of the result. Add 41 to the beginning of the byte array and ensure the initial address
length is 21 bytes. Hash the address twice using the SHA3-256 function and take the first 4 bytes as
verification code. Add the verification code to the end of the initial address and obtain the address in
base58check format through base58 encoding. An encoded Mainnet address begins with T and is 34
bytes in length.

4.3 Structure

The three different account types are Normal, AssetIssue, and Contract. An Account contains 7
parameters:

• account name: The name for the account – for example, BillsAccount;

• type: The type of the account – for example, 0 (stands for type ‘Normal’);

• address: The unique identifier for the account on the TRON network - for example, T9yD. . . 9mGg;

• balance: The TRX balance of the account – for example, 4213312;

• vote: Votes received by the account – for example, {(“0x1b7w. . . 9xj3”,323), (“0x8djq. . . j12m”,88),
. . . ,(“0x82nd. . .mx6i”,10001)};

• asset: Other assets, besides TRX, held in the account – for example, {<”WishToken”, 66666>,

10

<”Dogie”, 233>}.

• latest operation time: The timestamp of the account’s most recent operation.

Protobuf data structure:

1 message Account {
2 message Vote {
3 bytes vote_address = 1;
4 int64 vote_count = 2;
5 }
6 bytes accout_name = 1;
7 AccountType type = 2;
8 bytes address = 3;
9 int64 balance = 4;

10 repeated Vote votes = 5;
11 map<string, int64> asset = 6;
12 int64 latest_operation_time = 10;
13 }
14 enum AccountType {
15 Normal = 0;
16 AssetIssue = 1;
17 Contract = 2;
18 }

11

5 Block

A block typically contains a block header and several transactions. Protobuf data structure:

1 message Block {
2 BlockHeader block_header = 1;
3 repeated Transaction transactions = 2;
4 }

5.1 Block Header

A block header contains raw data, witness signature, and blockID. Protobuf data structure:

1 message BlockHeader {
2 message raw {
3 int64 timestamp = 1;
4 bytes txTrieRoot = 2;
5 bytes parentHash = 3;
6 int64 number = 7;
7 int64 witness_id = 8;
8 bytes witness_address = 9;
9 int32 version = 10;

10 bytes accountStateRoot = 11;
11 }
12 raw raw_data = 1;
13 bytes witness_signature = 2;
14 }

5.1.1 Raw Data

Raw data is denoted as raw data in Protobuf. It contains the raw data of a message, containing 8
parameters:

1. timestamp: timestamp of this message – for example, 1543884429000.

2. txTrieRoot: the Merkle Tree’s Root – for example, 7dacsa. . . 3ed.

3. parentHash: the hash of the last block – for example, 7dacsa. . . 3ed.

4. number: the block height – for example, 4638708.

5. version: reserved – for example, 5.

6. witness address: the address of the witness packed in this block – for example, 41928c...4d21.

7. witness id: the ID of the witness that packed this block – for example, “ 0xu82h. . . 7237 ”.

8. accountStateRoot: the address of the witness packed this block – for example, “ 0xu82h. . . 7237 ”.

5.1.2 Witness Signature

Witness signature is denoted as witness signature in Protobuf, which is the signature for this block
header from the witness node.

5.1.3 Block ID

Block ID is denoted as blockID in Protobuf. It contains the atomic identification of a block. A Block
ID contains 2 parameters:

1. hash: the hash of block.

2. number: the hash and height of the block.

12

5.2 Transaction

5.2.1 Signing

TRON’s transaction signing process follows a standard ECDSA cryptographic algorithm, with a
SECP256K1 selection curve. A private key is a random number, and the public key is a point on
the elliptic curve. The public key generation process consists of first generating a random number as a
private key, and then multiplying the base point of the elliptic curve by the private key to obtain the
public key. When a transaction occurs, the transaction raw data is first converted into byte format.

The raw data then undergoes SHA-256 hashing. The private key corresponding to the contract address
then signs the result of the SHA256 hash. The signature result is then added to the transaction.

5.2.2 Bandwidth Model

Ordinary transactions only consume Bandwidth Points, but smart contract operations consume both
Energy and Bandwidth Points. There are two types of Bandwidth Points available. Users can gain
Bandwidth Points from freezing TRX, while free daily Bandwidth Points are also available daily7.

When a TRX transaction is broadcasted, it is transmitted and stored in the form of a byte array
over the network. Bandwidth Points consumed by one transaction = number of transaction bytes
multiplied by Bandwidth Points rate. For example, if the byte array length of a transaction is 200,
then the transaction consumes 200 Bandwidth Points. However, if a TRX or token transfer results
in the target account being created, then only the Bandwidth Points consumed to create the account
will be deducted, and additional Bandwidth Points will not be deducted. When a transfer creates
an account lacking sufficient available Bandwidth, a proposal-controlled account creation fee of 0.1
TRX will be deducted. Account creation transactions currently have a size limit of 1000 bytes, also
governed by proposal. In an account creation scenario, the network will first consume the Bandwidth
Points that the transaction initiator gained from freezing TRX. If this amount is insufficient, then the
network consumes the transaction initiator’s TRX.

In standard TRX transfer scenarios from one TRX account to another, the network first consumes
the Bandwidth Points gained by the transaction initiator for freezing TRX. If that is insufficient, it
then consumes from the daily free Bandwidth Points. If that is still not enough, then the network
consumes the TRX of the transaction initiator. The amount is calculated by the number of bytes in
the transaction multiplied by the TRX cost per byte8. Thus, for most TRX holders who may not
necessarily freeze their TRX to participate in SR voting, the first step is automatically skipped (since
TRX balance frozen = 0) and the daily free Bandwidth powers the transaction.

For TRC-10 token transfers, the network first verifies whether the total free Bandwidth Points of
the issued token asset are sufficient. If not, the Bandwidth Points obtained from freezing TRX are
consumed. If there are still not enough Bandwidth Points, then it consumes the TRX of the transaction
initiator.

5.2.3 Fee

TRON network generally does not charge fees for most transactions, however, due to system restrictions
and fairness, Bandwidth usage and transactions do incur certain fees.

Fee charges are broken down into the following categories:

1. Normal transactions cost Bandwidth Points. Users can use the free daily Bandwidth Points or
freeze TRX to obtain more. When Bandwidth Points are not enough, TRX will be used directly
from the sending account. The TRX needed is the number of bytes * TRX cost per byte.

2. Smart contracts cost Energy (Section 6) but will also need Bandwidth Points for the transaction
to be broadcasted and confirmed. The Bandwidth cost is the same as above.

7The specific amount of this free allowance is defined by the freeNetLimit parameter in the TRON Chain Param-
eters API: https://developers.tron.network/reference/wallet-getchainparameters

8This cost is defined by the getTransactionFee parameter in the TRON Chain Parameters API

13

3. All query transactions are free. It doesn’t cost Energy or Bandwidth.

TRON network also defines a set of fixed fees for the following transactions (for the latest values,
please refer to the TRON Chain Parameters API):

1. Issue a TRC-10 token: 1,024 TRX (see getAssetIssueFee)

2. Apply to be an SR candidate: 9,999 TRX (see getAccountUpgradeCost)

3. Create a Bancor transaction: 1,024 TRX (see getExchangeCreateFee)

4. Update the account permission: 100 TRX (see getUpdateAccountPermissionFee)

5. Activate the account: 1 TRX (see getCreateNewAccountFeeInSystemContract); insuffi-
cient Bandwidth obtained through staking in the creator’s account incurs an additional 0.1 TRX
fee to pay for the Bandwidth (see getCreateAccountFee)

6. Multisig transaction: 1 TRX (see getMultiSignFee)

7. Transaction note: 1 TRX (see getMemoFee)

5.2.4 Transaction as Proof of Stake (TaPoS)

TRON uses TaPoS to ensure the transactions all confirm the main blockchain, while making it difficult
to forge counterfeit chains. In TaPoS, the networks require each transaction include part of the hash
of a recent block header. This requirement prevents transactions from being replayed on forks not
including the referenced block, and also signals the network that a particular user and their stake are
on a specific fork. This consensus mechanism protects the network against Denial of Service, 51%,
selfish mining, and double-spending attacks.

5.2.5 Transaction Confirmation

A transaction is included in a block after being broadcast to the network. The transaction is considered
confirmed after its block has been followed by 19 subsequent blocks, each produced by a different Super
Representative.

Each block takes 3̃ seconds to be mined on the blockchain. Time may slightly vary for each SR due to
network conditions and machine configurations. In general, a transaction is considered fully confirmed
after 1̃ minute.

5.2.6 Structure

Transaction APIs consist of the following functions:

1 message Transaction {
2 message Contract {
3 enum ContractType {
4 AccountCreateContract = 0; // Create account/wallet
5 TransferContract = 1; // Transfer TRX
6 TransferAssetContract = 2; // Transfer TRC-10 token
7 VoteWitnessContract = 4; // Vote for SR
8 WitnessCreateContract = 5; // Create a new SR account
9 AssetIssueContract = 6; // Create a new TRC-10 token

10 WitnessUpdateContract = 8; // Update SR information
11 ParticipateAssetIssueContract = 9; // Purchase TRC-10 token
12 AccountUpdateContract = 10; // Update account/wallet information
13 FreezeBalanceContract = 11; // Freeze TRX for Bandwidth or Energy
14 UnfreezeBalanceContract = 12; // Unfreeze TRX
15 WithdrawBalanceContract = 13; // Withdraw SR rewards, once per day
16 UnfreezeAssetContract = 14; // Unfreeze TRC-10 token
17 UpdateAssetContract = 15; // Update a TRC-10 token’s information
18 ProposalCreateContract = 16; // Create a new network proposal by any SR
19 ProposalApproveContract = 17; // SR votes yes for a network proposal
20 ProposalDeleteContract = 18; // Delete a network proposal by owner

14

21 CreateSmartContract = 30; // Deploy a new smart contract
22 TriggerSmartContract = 31; // Call a function on a smart contract
23 GetContract = 32; // Get an existing smart contract
24 UpdateSettingContract = 33; // Update a smart contract’s parameters
25 ExchangeCreateContract = 41; // Create a token trading pair on DEX
26 ExchangeInjectContract = 42; // Inject funding into a trading pair
27 ExchangeWithdrawContract = 43; // Withdraw funding from a trading pair
28 ExchangeTransactionContract = 44; // Perform token trading
29 UpdateEnergyLimitContract = 45; // Update origin_energy_limit on a smart

contract
30 AccountPermissionUpdateContract = 46; // Update account permissions
31 ClearABIContract = 48; // Clear a smart contract’s ABI
32 UpdateBrokerageContract = 49; // Update SR brokerage commission rate
33 MarketSellAssetContract = 52; // Place a market sell order
34 MarketCancelOrderContract = 53; // Cancel an existing market order
35 FreezeBalanceV2Contract = 54; // Freeze TRX to get resources
36 UnfreezeBalanceV2Contract = 55; // Cancel freezed TRX
37 WithdrawExpireUnfreezeContract = 56; // Withdraw TRX after the unfreeze waiting

period has expired
38 DelegateResourceContract = 57; // Delegate Bandwidth or Energy to another

account
39 UnDelegateResourceContract = 58; // Cancel delegated resource
40 CancelAllUnfreezeV2Contract = 59; // Cancel all pending unfreeze operations
41 }
42 ContractType type = 1;
43 google.protobuf.Any parameter = 2;
44 bytes provider = 3;
45 bytes ContractName = 4;
46 int32 Permission_id = 5;
47 }
48 }

15

6 TRON Virtual Machine (TVM)

6.1 Introduction

The TRON Virtual Machine (TVM) is a lightweight, Turing-complete virtual machine developed for the
TRON ecosystem. Its goal is to provide a custom-built blockchain system that is efficient, convenient,
stable, secure, and scalable.

The TVM initially forked from the EVM9 and can connect seamlessly with the existing Solidity smart
contract development ecosystem. Based on that, the TVM additionally supports DPoS consensus.

The TVM introduces the concept of Energy to manage computational resources, which differs from
the EVM’s Gas mechanism. On the TVM, the execution of smart contracts consumes Energy. Users
can obtain Energy by staking TRX. When an account has sufficient Energy, executing smart contract
operations does not require the direct burning of TRX. When available Energy is insufficient, the
system will then burn TRX from the account to cover the computational costs.

6.2 Workflow

The compiler first translates the Solidity smart contract into bytecode readable and executable on the
TVM. The TVM then processes data through opcode, which is equivalent to operating the logic of a
stack-based finite state machine. Finally, the TVM accesses blockchain data and invokes the External
Data Interface through the Interoperation layer.

6.3 Performance

6.3.1 Lightweight Architecture

The TVM adopts a lightweight architecture with the aim of reducing resource consumption to guarantee
system performance.

6.3.2 Robust

TRON employs a dual-resource model (comprising Bandwidth and Energy) for transaction processing
and smart contract execution. Users can primarily acquire these resources without direct transactional
cost by freezing TRX. When resource limits are exceeded, TRX is consumed (burned) proportionally
to the excess usage. This resource management system enhances network security by significantly
increasing the economic cost of malicious activities and ensures predictable resource consumption due
to fixed unit costs for each operation.

6.3.3 High Compatibility

The TVM is compatible with the EVM and will be compatible with more mainstream VMs in the
future. Thereby, all smart contracts on the EVM are executable on the TVM.

6.3.4 Low Cost

Due to the TVM’s Bandwidth setup, development costs are reduced, and developers can focus on
the logic development of their contract code. The TVM also offers all-in-one interfaces for contract
deployment, triggering, and viewing to offer the convenience for developers.

9EVM: Ethereum Virtual Machine (https://github.com/ethereum/ethereumj)

16

Figure 4: TVM Workflow

17

7 Smart Contract

7.1 Introduction

A smart contract is a protocol that digitally verifies contract negotiation. They define the rules and
penalties related to an agreement and also automatically enforce those obligations. The smart contract
code facilitates, verifies, and enforces the negotiation or performance of an agreement or transaction.
From a tokenization perspective, smart contracts also facilitate automatic funds transfers between
participating parties should certain criteria be met.

TRON smart contracts are written in the Solidity language. Once written and tested, they can be
compiled into bytecode, then deployed onto the TRON network for the TRON Virtual Machine. Once
deployed, smart contracts can be queried via their contract addresses. The contract Application Binary
Interface (ABI) shows the contract’s call functions and is used for interacting with the network.

7.2 Energy Model

The maximum Energy limit for deploying and triggering a smart contract is a function of several
variables:

• Dynamic Energy from freezing 1 TRX is 180,000,000,000 (Total Energy Limit) / (Total Energy
Weight)

• Energy limit is the daily account Energy limit from freezing TRX

• Remaining daily account Energy from freezing TRX is calculated as Energy Limit - Energy Used

• Fee limit in TRX is set in smart contract deploy/trigger call

• Remaining usable TRX in the account

• Energy per TRX if purchased directly (210 SUN = 1 Energy) = 100,000, SRs can vote on
adjustment

There are two consumption scenarios to calculate for maximum Energy limit for deployment and
trigger. The logic can be expressed as follows:

1 const R = Dynamic Energy Limit
2 const F = Daily account Energy from freezing TRX
3 const E = Remaining daily account Energy from freezing TRX
4 const L = Fee limit in TRX set in deploy/trigger call
5 const T = Remaining usable TRX in account
6 const C = Energy per TRX if purchased directly
7 // Calculate M, defined as maximum Energy limit for deployment/trigger of a smart

contract
8 if F > L*R
9 let M = min(E+T*C, L*R)

10 else
11 let M = E+T*C

Since February 5, 2023, the TRON network has implemented a new dynamic Energy model, enabled by
the No. 83 committee proposal initiated by the TRON developer community. This model dynamically
adjusts the Energy consumption of each contract according to the contract’s resource occupancy. This
aims to make the allocation of Energy resources on the chain more reasonable and to prevent excessive
concentration of network resources on a few popular contracts.

7.3 Deployment

When a TRON solidity smart contract is compiled, the TRON Virtual Machine reads the compiled
bytecode. The bytecode consists of a section for code deployment, contract code, and the Auxdata.
The Auxdata is the source code’s cryptographic fingerprint, used for verification. The deployment
bytecode runs the constructor function and sets up the initial storage variables. The deployment code

18

also calculates the contract code and returns it to the TVM. The ABI is a JSON file that describes a
TRON smart contract’s functions. This file defines the function names, their payability, the function
return values, and their state mutability.

7.4 Trigger Function

Once the TRON smart contracts are deployed, their functions can be triggered individually either
via Tronide or through API calls. State-changing functions require Energy while read-only functions
execute without Energy.

7.5 TRON Solidity

TRON Solidity is a fork from Ethereum’s Solidity language. TRON modifies the original project to
support TRX and SUN units (1 TRX = 1,000,000 SUN). The rest of the language syntax is compatible
with Solidity 0.8.23. Thus the Tron Virtual Machine (TVM) is almost 100% compatible with EVM
instructions.

19

8 Token

8.1 TRC-10 Token

In the TRON network, each account can issue tokens at the expense of 1024 TRX. To issue tokens,
the issuer needs to specify a token name, the total capitalization, the exchange rate to TRX, circula-
tion duration, description, website, maximum Bandwidth consumption per account, total Bandwidth
consumption, and the amount of tokens frozen. Each token issuance can also configure each account’s
maximum daily token transfer Bandwidth Points, the entire network’s maximum daily token transfer
Bandwidth Points, total token supply, locking duration in days, and the total amount of tokens locked.

8.2 TRC-20 Token

TRC-20 is a technical standard used for smart contracts implementing tokens supported by the TRON
Virtual Machine. It is fully compatible with ERC-20.

The interface is as follows:

1 contract TRC20Interface {
2 function totalSupply() public constant returns (uint);
3 function balanceOf(address tokenOwner) public constant returns (uint balance);
4 function allowance(address tokenOwner, address spender) public constant returns (uint

remaining);
5 function transfer(address to, uint tokens) public returns (bool success); function

approve(address spender, uint tokens) public returns (bool success);
6 function transferFrom(address from, address to, uint tokens) public returns (bool

success);
7 event Transfer(address indexed from, address indexed to, uint tokens); event Approval(

address indexed tokenOwner, address indexed spender, uint tokens);
8 }

Transfers of TRC-10 tokens primarily consume Bandwidth, whereas TRC-20 token transfers consume
both Bandwidth and Energy. This difference in resource consumption often results in significantly
lower transaction fees for TRC-10 tokens compared to TRC-20. While API transfers and deposits of
TRC-10 tokens incur Bandwidth costs, the cost remains generally lower than the combined Bandwidth
and Energy of TRC-20 transactions. Transfers and deposits in smart contracts for TRC-10 tokens cost
both Bandwidth and Energy. In contrast, TRC-20 consistently consumes both Bandwidth and Energy
for transfers and deposits, whether through API calls or smart contracts.

8.3 Beyond

Since TRON uses the same Solidity version as Ethereum, more token standards could be readily ported
to TRON.

20

9 Governance

9.1 Super Representative

9.1.1 General

Every account in the TRON network can apply and have the opportunity to become a Super Repre-
sentative (SR). Everyone can vote for SR candidates. The top 27 candidates with the most votes will
become SRs with the right and obligation to generate blocks. The votes are counted every 6 hours
and the SRs will change accordingly.

To prevent malicious attacks, there is a cost to becoming an SR candidate. When applying, 9999 TRX
will be burned from the applicant’s account. Once successful, such account can join the SR election.

9.1.2 Election

TRON Power (denoted as TP) is needed to vote and the amount of TP depends on the voter’s frozen
assets (TRX).

TP is calculated in the following way:

1TP = 1TRX frozen to get Energy/Bandwidth

Every account in the TRON network has the right to vote for their own SRs.

After the release (unfreeze, available after 14 days), users won’t have any frozen assets and lose all TP
accordingly. As a result, all votes become invalid for the ongoing and future voting round unless TRX
is frozen again to vote.

Note that the TRON network only records the most recent vote, which means that every new vote
will negate all previous votes.

9.1.3 Reward

a. Vote Reward

Also known as Candidate Reward, which the top 127 candidates updated once every round (6 hours)
will share 921,600 TRX as mined. The reward will be split in accordance with the vote weight each
candidate receives. Each year, the total reward for candidates will be 1,345,536,000 TRX.

Total vote reward per round

Why 921,600 TRX every round?

921, 600 TRX = total vote reward per round (V R/round)

V R/round = 128 TRX/block × 20 blocks/min × 60 mins/hr × 6 hrs/round

Notice: this is set by WITNESS 127 PAY PER BLOCK = 128 TRX. See dynamic network parameters.

Total vote reward per year

Why 1,345,536,000 TRX every year?

1, 345, 536, 000 TRX = total vote reward per year (V R/year)

V R/year = 921, 600 TRX/round × 4 rounds/day × 365 days/year

b. Block Reward

21

Also known as Super Representative Reward, which the top 27 candidates (SRs) who are elected every
round (6 hours) will share roughly 57,600 TRX as mined. The reward will be split evenly between the
27 SRs (minus the total reward blocks missed due to network error). A total of 84,096,000 TRX will
be awarded annually to the 27 SRs.

Total block reward per round

Why 57,600 TRX every round?

57, 600 TRX = total block reward per round (BR/round)

BR/round = 8 TRX/bloc × 20 blocks/min × 60 mins/hr × 6hrs/round

Notice: the unit block reward is set by WITNESS PAY PER BLOCK = 8 TRX. See dynamic network
parameters.

Total block reward per year

Why 84,096,000 TRX every year?

84, 096, 000 TRX = total block reward per year (BR/year)

BR/year = 57, 600 TRX/round × 4 rounds/day × 365 days/year

c. Reward Calculation

SR reward calculation

total reward = vote reward(V R) + block reward(BR)

V R = total V R× votes SR candidate received

total votes

BR =
total BR

27
− block missed× 32

Note: the reward is calculated per SR per round (6 hours)

Rank 28 to rank 127 SR candidate reward calculation

total reward = vote reward(V R)

V R = total V R× votes SR candidate received

total votes

Note: the reward is calculated per SR candidate per round (6 hours)

9.2 Committee

9.2.1 General

The committee is used to modify TRON dynamic network parameters, such as block generation re-
wards, transaction fees, etc. The committee consists of the 27 SRs in the current round. Each SR has
the right to propose and vote on proposals. When a proposal receives 19 votes or more, it is approved
and the new network parameters will be applied in the next maintenance period (3 days).

9.2.2 Dynamic Network Parameters

Please see Appendix B for details.

9.2.3 Create Proposal

Only the SR accounts have the rights to propose a change in dynamic network parameters.

22

9.2.4 Vote Proposal

Only committee members (SRs) can vote for a proposal and the member who does not vote in time
will be considered as a disagree. The proposal is active for 3 days after it is created. The vote can be
changed or retrieved during the 3-days voting window. Once the period ends, the proposal will either
succeed (19+ votes) or fail (and end).

9.2.5 Cancel Proposal

The proposer can cancel the proposal before it becomes effective.

9.3 Structure

SRs are the witnesses of newly generated blocks. A witness contains 8 parameters:

1. address: the address of this witness – for example, 0xu82h. . . 7237.

2. voteCount: number of received votes on this witness – for example, 234234.

3. pubKey: the public key for this witness – for example, 0xu82h. . . 7237.

4. url: the url for this witness – for example, https://www.noonetrust.com.

5. totalProduced: the number of blocks this witness produced – for example, 2434.

6. totalMissed: the number of blocks this witness missed – for example, 7.

7. latestBlockNum: the latest height of block – for example, 4522.

8. isjobs: a boolean flag.

Protobuf data structure:

1 message Witness{
2 bytes address = 1;
3 int64 voteCount = 2;
4 bytes pubKey = 3;
5 string url = 4;
6 int64 totalProduced = 5;
7 int64 totalMissed = 6;
8 int64 latestBlockNum = 7;
9 bool isJobs = 8;

10 }

23

http://www.noonetrust.com/

10 DApp Development

10.1 APIs

The TRON network offers a wide selection of over 60+ HTTP API gateways for interacting with
the network via Full Nodes. Additionally, TronWeb is a comprehensive JavaScript library containing
API functions that enable developers to deploy smart contracts, change the blockchain state, query
blockchain and contract information, trade on the DEX, and much more. These API gateways can be
directed towards a local privatenet, the Shasta testnet, the Nile testnet, or the TRON Mainnet.

10.2 Networks

TRON has a Shasta testnet, a Nile testnet, as well as a Mainnet. Developers may connect to the
networks by deploying nodes, interacting via Fullnode APIs the TronGrid service. The TronGrid service
consists of load balanced node clusters hosted on AWS servers worldwide. As DApp development scales
up and API call volumes increase, TronGrid successfully fields the increase in API traffic.

10.3 Resources

The TRON Developer Hub is a comprehensive API documentation10 site tailored towards developers
wishing to build on the TRON network. The Developer Hub provides a high-level conceptual under-
standing of TRON and walks users through the details of interacting with the network. The guides
walk developers through node setup, deployment and interaction with smart contracts, API interaction
and implementation, building sample DApps, and using each of the developer tools.

10TRON Developer Hub: https://developers.tron.network/

24

11 Conclusion

TRON is a scalable blockchain solution that has employed innovative methods for tackling challenges
faced by legacy blockchain networks. Having reached over 2M transactions per day, with over 700K
TRX accounts, and surpassing 2000 TPS, TRON has enabled the community in creating a decentralized
and democratized network.

25

Appendix A: Terminology

Address/Wallet

An address or wallet consisting of account credentials on the TRON network are generated by a key
pair, which consists of a private key and a public key, the latter being derived from the former through
an algorithm. The public key is usually used for session key encryption, signature verification, and
encrypting data that could be decrypted by a corresponding private key.

Application Binary Interface (ABI)

ABI is an interface between two binary program modules; usually one of these modules is a library or
an operating system facility, and the other is a user run program.

Application Programming Interface (API)

An API is mainly used for user clients development. With API support, token issuance platforms can
also be designed by developers themselves.

Asset

In TRON’s documents, asset is the same as token, which is also denoted as TRC-10 token.

Bandwidth Points (BP)

To keep the network operating smoothly, TRON network transactions use BP as fuel. Each account gets
a daily free amount of BP, defined by the freeNetLimit parameter in the TRON Chain Parameters
API, and more can be obtained by freezing TRX for BP. Both TRX and TRC-10 token transfers are
normal transactions costing BP. Smart contract deployment and execution transactions consume both
BP and Energy.

Block

Blocks contain the digital records of transactions. A complete block consists of the magic number,
block size, block header, transaction counter, and transaction data.

Block Reward

Block production rewards are sent to a sub-account (address/wallet). SRs can claim their rewards on
Tronscan or through the API directly.

Block Header

A block header is part of a block. TRON block headers contain the previous block’s hash, the Merkle
root, timestamp, version, and witness address.

Cold Wallet

Cold wallet, also known as offline wallet, keeps the private key completely disconnected from any
network. Cold wallets are usually installed on ”cold” devices (for example, computers or mobile
phones staying offline) to ensure the security of TRX private key.

Decentralized Application (DApp)

DApp is an application that operates without a centrally trusted party. An application that enables
direct interaction/agreements/communication between end users and/or resources without a middle-
man.

26

gRPC Remote Procedure Calls (gRPC)

gRPC11 is an open-source remote procedure call (RPC) system initially developed at Google. It uses
HTTP/2 for transport, Protocol Buffers as the interface description language, and provides features
such as authentication, bidirectional streaming and flow control, blocking or nonblocking bindings,
and cancellation and timeouts. It generates cross-platform client and server bindings for many lan-
guages. Most common usage scenarios include connecting services in microservices style architecture
and connecting mobile devices, and browser clients to backend services.

Hot Wallet

Hot wallet, also known as online wallet, allows users’ private keys to be used online, thus it could be
susceptible to potential vulnerabilities or interception by malicious actors.

Java Development Kit (JDK)

JDK is the Java SDK used for Java applications. It is the core of Java development, comprising the
Java application environment (JVM+Java class library) and Java tools.

KhaosDB

TRON has a KhaosDB in the full-node memory that can store all the newly-forked chains generated
within a certain period of time and supports witnesses to switch from their own active chain swiftly
into a new main chain. See 2.2.2 State Storage for more details.

LevelDB

LevelDB was initially adopted with the primary goal to meet the requirements of fast R/W and rapid
development. After launching the Mainnet, TRON upgraded its database to an entirely customized
one catered to its very own needs. See 2.2.1 Blockchain Storage for more details.

Merkle Root

A Merkle root is the hash of all hashes of all transactions included as part of a block in a blockchain
network. See 3.1 Delegated Proof of Stake (DPoS) for more details.

Public Testnet (Shasta, Nile)

A version of the network running in a single-node configuration. Developers can connect and test
features without worrying about the economic loss. Testnet tokens have no value and anyone can
request more from the public faucet.

remote procedure call (RPC)

In distributed computing, an RPC12 is when a computer program causes a procedure (subroutine)
to execute in a different address space (commonly on another computer on a shared network), which
is coded as if it were a normal (local) procedure call, without the programmer explicitly coding the
details for the remote interaction.

Scalability

Scalability is a feature of the TRON Protocol. It is the capability of a system, network, or process to
handle a growing amount of work or its potential to be enlarged to accommodate that growth.

11https://en.wikipedia.org/wiki/GRPC
12https://en.wikipedia.org/wiki/Remote procedure call

27

SUN

SUN replaced drop as the smallest unit of TRX. 1 TRX = 1,000,000 SUN.

Throughput

High throughput is a feature of TRON Mainnet. It is measured in Transactions Per Second (TPS),
namely the maximum transaction capacity in one second.

Timestamp

The approximate time of block production is recorded as Unix timestamp, which is the number of
milliseconds that have elapsed since 00:00:00 01 Jan 1970 UTC.

TRC-10

A standard of crypto token on the TRON platform. Certain rules and interfaces are required to follow
when holding an initial coin offering on the TRON blockchain.

TRX

TRX stands for Tronix, which is the official cryptocurrency of TRON.

28

Appendix B: Dynamic Network Parameters

0. MAINTENANCE TIME INTERVAL

• Description: Modify the maintenance interval time, also the interval for SRs to calculate and
distribute voting rewards.

• Example: [6 * 3600 * 1000] ms - which is 6 hours.

• Range: [3 * 27 * 1000, 24 * 3600 * 1000] ms

1. ACCOUNT UPGRADE COST

• Description: Modify the cost for an account to apply to become a Super Representative candidate.

• Example: [9 999 000 000] SUN - which is 9999 TRX.

• Range: [0, 100 000 000 000 000 000] SUN

2. CREATE ACCOUNT FEE

• Description: Modify the fee for creating a new account by sending TRX to a new address.

• Example: [100 000] SUN - which is 0.1 TRX.

• Range: [0, 100 000 000 000 000 000] SUN

3. TRANSACTION FEE

• Description: Modify the fee rate for consuming Bandwidth Points when an account’s free/staked
Bandwidth is insufficient.

• Example: [10] SUN/byte.

• Range: [0, 100 000 000 000] SUN/byte

4. ASSET ISSUE FEE

• Description: Modify the one-time fee for issuing a new TRC-10 token.

• Example: [1 024 000 000] SUN - which is 1024 TRX.

• Range: [0, 100 000 000 000 000 000] SUN

5. WITNESS PAY PER BLOCK

• Description: Modify the reward paid to a Super Representative for successfully producing a
block.

• Example: [16 000 000] SUN - which is 16 TRX.

• Range: [0, 100 000 000 000 000 000] SUN

6. WITNESS STANDBY ALLOWANCE

• Description: Modify the total reward distributed among the top 127 Super Representatives and
Partners per round.

• Example: [115 200 000 000] SUN - which is 115,200 TRX.

29

• Range: [0, 100 000 000 000 000 000] SUN

7. CREATE NEW ACCOUNT FEE IN SYSTEM CONTRACT

• Description: Modify the fee for creating a new account via a system contract call.

• Example: [0] SUN.

• Range: [0, 100 000 000 000 000 000] SUN

8. CREATE NEW ACCOUNT BANDWIDTH RATE

• Description: Modify the Bandwidth consumption multiplier for creating a new account.

• Example: [1].

• Range: [0, 100 000 000 000 000 000]

9. ALLOW CREATION OF CONTRACTS

• Description: Enable or disable the creation of new smart contracts.

• Example: True

• Type: True/False

10. REMOVE THE POWER OF THE GR

• Description: Remove the initial voting power held by the Genesis Representatives (GRs).

• Example: True

• Type: True/False - Notice: cannot be set back to False from True.

11. ENERGY FEE

• Description: Modify the fee rate for consuming Energy when an account’s Energy is insufficient.

• Example: [10] SUN.

• Range: [0, 100 000 000 000 000 000] SUN

12. EXCHANGE CREATE FEE

• Description: Modify the fee for creating a new TRC-10 trading pair in the decentralized exchange.

• Example: [1 024 000 000] SUN - which is 1024 TRX.

• Range: [0, 100 000 000 000 000 000] SUN

13. MAX CPU TIME OF ONE TX

• Description: Modify the maximum CPU execution time allowed for a single transaction.

• Example: [50] ms.

• Range: [0, 1000] ms

30

14. ALLOW UPDATE ACCOUNT NAME

• Description: Enable or disable the ability for accounts to update their name.

• Example: False

• Type: True/False

15. ALLOW SAME TOKEN NAME

• Description: Allow different TRC-10 tokens to be created with the same name.

• Example: True

• Type: True/False

16. ALLOW DELEGATE RESOURCE

• Description: Enable or disable the resource delegation functionality (staking v1.0).

• Example: True

• Type: True/False

18. ALLOW TVM TRANSFER TRC10

• Description: Allow smart contracts to natively transfer TRC-10 tokens using the transferToken
call.

• Example: True

• Type: True/False

19. TOTAL CURRENT ENERGY LIMIT

• Description: Modify the current total amount of Energy available on the network.

• Example: [50 000 000 000].

• Range: [0, 100 000 000 000 000 000]

20. ALLOW MULTI SIGN

• Description: Enable or disable the multi-signature feature for accounts.

• Example: True

• Type: True/False

21. ALLOW ADAPTIVE ENERGY

• Description: Enable or disable the adaptive Energy model.

• Example: True

• Type: True/False

22. UPDATE ACCOUNT PERMISSION FEE

• Description: Modify the fee for updating an account’s permission structure.

31

• Example: [100 000 000] SUN - which is 100 TRX.

• Range: [0, 100 000 000 000] SUN

23. MULTI SIGN FEE

• Description: Modify the additional fee charged for processing a multi-signature transaction.

• Example: [1 000 000] SUN - which is 1 TRX.

• Range: [0, 100 000 000 000] SUN

24. ALLOW PROTO FILTER NUM

• Description: Enable or disable protocol message filtering.

• Example: False

• Type: True/False

26. ALLOW TVM CONSTANTINOPLE

• Description: Enable the features of the Constantinople Ethereum upgrade in the TVM.

• Example: True

• Type: True/False

29. ADAPTIVE RESOURCE LIMIT MULTIPLIER

• Description: Modify the multiplier used in the adaptive resource model.

• Example: [1000].

• Range: [1, 10000]

30. ALLOW CHANGE DELEGATION

• Description: Allow users to change the recipient of their delegated resources without un-staking.

• Example: True

• Type: True/False

31. WITNESS 127 PAY PER BLOCK

• Description: Modify the block production reward for the top 28-127 ranked Partners.

• Example: [160 000 000] SUN - which is 160 TRX.

• Range: [0, 100 000 000 000 000 000] SUN

32. ALLOW TVM SOLIDITY 059

• Description: Enable TVM support for contracts compiled with Solidity v0.5.9 and above.

• Example: True

• Type: True/False

32

33. ADAPTIVE RESOURCE LIMIT TARGET RATIO

• Description: Modify the target ratio used in the adaptive resource model algorithm.

• Example: [10].

• Range: [1, 1000]

35. FORBID TRANSFER TO CONTRACT

• Description: Forbid direct TRX transfers to a contract without a payable fallback function.

• Example: True

• Type: True/False

39. ALLOW SHIELDED TRC20 TRANSACTION

• Description: Enable or disable privacy-preserving shielded transactions for TRC-20 tokens.

• Example: True

• Type: True/False

40. ALLOW PBFT

• Description: Enable or disable the PBFT consensus mechanism for faster transaction finality.

• Example: True

• Type: True/False

41. ALLOW TVM ISTANBUL

• Description: Enable the features of the Istanbul Ethereum upgrade in the TVM.

• Example: True

• Type: True/False

44. ALLOW MARKET TRANSACTION

• Description: Enable or disable market order transactions on the decentralized exchange.

• Example: True

• Type: True/False

45. MARKET SELL FEE

• Description: Modify the fee charged for executing a sell order on the decentralized exchange.

• Example: [0] SUN.

• Range: [0, 10 000 000 000] SUN

46. MARKET CANCEL FEE

• Description: Modify the fee for cancelling an open order on the decentralized exchange.

33

• Example: [0] SUN.

• Range: [0, 10 000 000 000] SUN

47. MAX FEE LIMIT

• Description: Modify the maximum fee limit a user can set for a single transaction.

• Example: [15 000 000 000] SUN - which is 15,000 TRX.

• Range: [0, 100 000 000 000 000 000] SUN

48. ALLOW TRANSACTION FEE POOL

• Description: Enable or disable the transaction fee pool mechanism.

• Example: False

• Type: True/False

49. ALLOW BLACKHOLE OPTIMIZATION

• Description: Enable or disable an optimization where burning tokens consumes minimal Energy.

• Example: True

• Type: True/False

51. ALLOW NEW RESOURCE MODEL

• Description: Enable or disable the new resource model (Staking 2.0).

• Example: True

• Type: True/False

52. ALLOW TVM FREEZE

• Description: Enable or disable TVM instructions related to the new staking/resource model
(Staking 2.0).

• Example: True

• Type: True/False

53. ALLOW ACCOUNT ASSET OPTIMIZATION

• Description: Enable an optimization for how account asset (TRC-10) balances are stored.

• Example: True

• Type: True/False

59. ALLOW TVM VOTE

• Description: Enable or disable the ability for smart contracts to execute voting operations.

• Example: True

• Type: True/False

34

60. ALLOW TVM COMPATIBLE EVM

• Description: Enable or disable TVM compatibility features with the EVM.

• Example: True

• Type: True/False

61. FREE NET LIMIT

• Description: Modify the amount of free Bandwidth Points each account receives daily.

• Example: [5000].

• Range: [0, 100000]

62. TOTAL NET LIMIT

• Description: Modify the total Bandwidth supplied by the network from staked TRX.

• Example: [43 200 000 000].

• Range: [0, 1 000 000 000 000]

63. ALLOW TVM LONDON

• Description: Enable the features of the London Ethereum upgrade in the TVM.

• Example: True

• Type: True/False

65. ALLOW HIGHER LIMIT FOR MAX CPU TIME OF ONE TX

• Description: Allow proposing a higher maximum value for the MAX CPU TIME OF ONE TX pa-
rameter.

• Example: True

• Type: True/False

66. ALLOW ASSET OPTIMIZATION

• Description: Enable or disable account asset storage optimization.

• Example: True

• Type: True/False

67. ALLOW NEW REWARD

• Description: Enable or disable the new reward algorithm for SRs and voters.

• Example: True

• Type: True/False

68. MEMO FEE

• Description: Modify the fee charged per byte for including a memo in a transaction.

35

• Example: [1 000 000] SUN - which is 1 TRX.

• Range: [0, 1 000 000 000] SUN

69. ALLOW DELEGATE OPTIMIZATION

• Description: Enable or disable optimizations for resource delegation storage.

• Example: True

• Type: True/False

70. UNFREEZE DELAY DAYS

• Description: Modify the number of days an asset is locked when using the new staking mechanism.

• Example: [14] Days.

• Range: [1, 365] Days

71. ALLOW OPTIMIZED RETURN VALUE OF CHAIN ID

• Description: Enable an optimization for the CHAINID opcode’s return value.

• Example: True

• Type: True/False

72. ALLOW DYNAMIC ENERGY

• Description: Enable or disable the dynamic Energy model.

• Example: True

• Type: True/False

73. DYNAMIC ENERGY THRESHOLD

• Description: Modify the contract Energy consumption threshold before the dynamic penalty
applies.

• Example: [5 000 000 000].

• Range: [0, 9223372036854775807]

74. DYNAMIC ENERGY INCREASE FACTOR

• Description: Modify the percentage factor by which Energy cost increases for a contract exceeding
the threshold.

• Example: [2000].

• Range: [0, 10000]

75. DYNAMIC ENERGY MAX FACTOR

• Description: Modify the maximum multiplier for Energy cost under the dynamic Energy model.

• Example: [34000].

36

• Range: [0, 100000]

76. ALLOW TVM SHANGHAI

• Description: Enable the features of the Shanghai Ethereum upgrade in the TVM.

• Example: True

• Type: True/False

77. ALLOW CANCEL ALL UNFREEZE V2

• Description: Enable the ability to cancel all pending unstaking requests under Staking 2.0.

• Example: True

• Type: True/False

78. MAX DELEGATE LOCK PERIOD

• Description: Modify the maximum lock-up period for resource delegation.

• Example: [864000].

• Range: (86400, 10512000]

79. ALLOW OLD REWARD OPT

• Description: Enable an optimization for the reward withdrawal algorithm for the old reward
system.

• Example: True

• Type: True/False

81. ALLOW ENERGY ADJUSTMENT

• Description: Enable or disable Energy adjustment functionalities.

• Example: True

• Type: True/False

82. MAX CREATE ACCOUNT TX SIZE

• Description: Modify the maximum transaction size for creating a new account.

• Example: [1000].

• Range: [500, 10000]

83. ALLOW TVM CANCUN

• Description: Enable the features of the Cancun Ethereum upgrade in the TVM.

• Example: True

• Type: True/False

37

87. ALLOW STRICT MATH

• Description: Migrate TVM math operations to java.lang.StrictMath for cross-platform
consistency.

• Example: True

• Type: True/False

88. CONSENSUS LOGIC OPTIMIZATION

• Description: Enable or disable optimizations in the consensus logic.

• Example: True

• Type: True/False

89. ALLOW TVM BLOB

• Description: Enable or disable TVM support for blob transactions (EIP-4844).

• Example: True

• Type: True/False

38

	Introduction
	Vision
	Background
	History
	The Genesis of a Decentralized Internet (2017)
	Developing the Core (2018)
	Expanding Functionality and Adoption (2019 - 2021)
	Sustained Growth and Ecosystem Dominance (2022 - Present)
	Looking Ahead

	Terminology

	Architecture
	Core Layer
	Storage Layer
	Blockchain Storage
	State Storage

	Application Layer
	Protocol
	Protocol Buffers
	HTTP

	TRON Virtual Machine (TVM)

	Consensus
	Delegated Proof of Stake (DPoS)

	Account
	Types
	Creation
	Structure

	Block
	Block Header
	Raw Data
	Witness Signature
	Block ID

	Transaction
	Signing
	Bandwidth Model
	Fee
	Transaction as Proof of Stake (TaPoS)
	Transaction Confirmation
	Structure

	TRON Virtual Machine (TVM)
	Introduction
	Workflow
	Performance
	Lightweight Architecture
	Robust
	High Compatibility
	Low Cost

	Smart Contract
	Introduction
	Energy Model
	Deployment
	Trigger Function
	TRON Solidity

	Token
	TRC-10 Token
	TRC-20 Token
	Beyond

	Governance
	Super Representative
	General
	Election
	Reward

	Committee
	General
	Dynamic Network Parameters
	Create Proposal
	Vote Proposal
	Cancel Proposal

	Structure

	DApp Development
	APIs
	Networks
	Resources

	Conclusion
	Appendix A: Terminology
	Appendix B: Dynamic Network Parameters

